Zhu Zifeng, Zhao Yiming, Ruan Yongming, Weng Xuexiang, Milcovich Gesmi
College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
Biosensors (Basel). 2025 Apr 12;15(4):246. doi: 10.3390/bios15040246.
BACKGROUND/OBJECTIVES: In this study, AuDNs/EPLE composite electrodes with hierarchical dendritic nanogold structures were fabricated using the in situ electrodeposition of gold nanoparticles through the - method. METHODS: A conductive polymer composite membrane, PEDOT, was synthesized via the electropolymerization of EDOT and the negatively charged PSS. The negatively charged SO groups on the surface of the PEDOT membrane were electrostatically adsorbed with the glucose oxidase (GOD) enzyme and a positively charged chitosan co-solution (GOD/chit). Using a layer-by-layer self-assembly approach, GOD was incorporated into the multilayers of the composite electrode to create the composite GOD/chit/PEDOT/AuDNs/EPLE. RESULTS: Electrochemical analysis revealed a GOD surface coverage of 8.5 × 10 mol cm and an electron transfer rate of 1.394 ± 0.02 s. The composite electrode exhibited a linear response to glucose in the concentration range of 6.923 × 10 mM to 1.54 mM, with an apparent Michaelis constant of 0.352 ± 0.02 mM. Furthermore, the GOD/chit/PEDOT/AuDNs/EPLE also showed good accuracy of glucose determination in human serum samples. CONCLUSIONS: These findings highlight the potential of the GOD/chit/PEDOT/AuDNs/EPLE composite electrode in the development of efficient enzymatic biofuel cells for glucose sensing and energy harvesting applications.
背景/目的:在本研究中,采用通过-方法原位电沉积金纳米颗粒的方式制备了具有分级树枝状纳米金结构的金树枝状纳米颗粒/酶促聚合电解质复合电极。 方法:通过3,4-乙撑二氧噻吩(EDOT)与带负电荷的聚苯乙烯磺酸钠(PSS)的电聚合反应合成了导电聚合物复合膜聚3,4-乙撑二氧噻吩(PEDOT)。PEDOT膜表面带负电荷的磺酸根基团与葡萄糖氧化酶(GOD)和带正电荷的壳聚糖共溶液(GOD/壳聚糖)发生静电吸附作用。采用层层自组装方法,将GOD纳入复合电极的多层结构中,制成复合GOD/壳聚糖/PEDOT/金树枝状纳米颗粒/酶促聚合电解质电极。 结果:电化学分析表明,GOD的表面覆盖率为8.5×10⁻⁶mol/cm²,电子转移速率为1.394±0.02 s⁻¹。该复合电极在6.923×10⁻⁵mM至1.54 mM的葡萄糖浓度范围内呈现线性响应,表观米氏常数为0.352±0.02 mM。此外,GOD/壳聚糖/PEDOT/金树枝状纳米颗粒/酶促聚合电解质电极在人血清样品中葡萄糖测定方面也显示出良好的准确性。 结论:这些研究结果突出了GOD/壳聚糖/PEDOT/金树枝状纳米颗粒/酶促聚合电解质复合电极在开发用于葡萄糖传感和能量收集应用的高效酶生物燃料电池方面的潜力。
Sensors (Basel). 2025-6-30
Int J Biol Macromol. 2023-12-31
RSC Adv. 2018-5-29
Micromachines (Basel). 2022-2-16
Sensors (Basel). 2021-7-8
Biosens Bioelectron. 2020-10-1