文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

负载于三维类石墨烯表面并通过逐层组装用于增强葡萄糖生物传感的树枝状金纳米颗粒

Dendritic Gold Nanoparticles Loaded on 3D Graphene-like Surface and Layer-by-Layer Assembly for Enhanced Glucose Biosensing.

作者信息

Zhu Zifeng, Zhao Yiming, Ruan Yongming, Weng Xuexiang, Milcovich Gesmi

机构信息

College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.

College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China.

出版信息

Biosensors (Basel). 2025 Apr 12;15(4):246. doi: 10.3390/bios15040246.


DOI:10.3390/bios15040246
PMID:40277559
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12024719/
Abstract

BACKGROUND/OBJECTIVES: In this study, AuDNs/EPLE composite electrodes with hierarchical dendritic nanogold structures were fabricated using the in situ electrodeposition of gold nanoparticles through the - method. METHODS: A conductive polymer composite membrane, PEDOT, was synthesized via the electropolymerization of EDOT and the negatively charged PSS. The negatively charged SO groups on the surface of the PEDOT membrane were electrostatically adsorbed with the glucose oxidase (GOD) enzyme and a positively charged chitosan co-solution (GOD/chit). Using a layer-by-layer self-assembly approach, GOD was incorporated into the multilayers of the composite electrode to create the composite GOD/chit/PEDOT/AuDNs/EPLE. RESULTS: Electrochemical analysis revealed a GOD surface coverage of 8.5 × 10 mol cm and an electron transfer rate of 1.394 ± 0.02 s. The composite electrode exhibited a linear response to glucose in the concentration range of 6.923 × 10 mM to 1.54 mM, with an apparent Michaelis constant of 0.352 ± 0.02 mM. Furthermore, the GOD/chit/PEDOT/AuDNs/EPLE also showed good accuracy of glucose determination in human serum samples. CONCLUSIONS: These findings highlight the potential of the GOD/chit/PEDOT/AuDNs/EPLE composite electrode in the development of efficient enzymatic biofuel cells for glucose sensing and energy harvesting applications.

摘要

背景/目的:在本研究中,采用通过-方法原位电沉积金纳米颗粒的方式制备了具有分级树枝状纳米金结构的金树枝状纳米颗粒/酶促聚合电解质复合电极。 方法:通过3,4-乙撑二氧噻吩(EDOT)与带负电荷的聚苯乙烯磺酸钠(PSS)的电聚合反应合成了导电聚合物复合膜聚3,4-乙撑二氧噻吩(PEDOT)。PEDOT膜表面带负电荷的磺酸根基团与葡萄糖氧化酶(GOD)和带正电荷的壳聚糖共溶液(GOD/壳聚糖)发生静电吸附作用。采用层层自组装方法,将GOD纳入复合电极的多层结构中,制成复合GOD/壳聚糖/PEDOT/金树枝状纳米颗粒/酶促聚合电解质电极。 结果:电化学分析表明,GOD的表面覆盖率为8.5×10⁻⁶mol/cm²,电子转移速率为1.394±0.02 s⁻¹。该复合电极在6.923×10⁻⁵mM至1.54 mM的葡萄糖浓度范围内呈现线性响应,表观米氏常数为0.352±0.02 mM。此外,GOD/壳聚糖/PEDOT/金树枝状纳米颗粒/酶促聚合电解质电极在人血清样品中葡萄糖测定方面也显示出良好的准确性。 结论:这些研究结果突出了GOD/壳聚糖/PEDOT/金树枝状纳米颗粒/酶促聚合电解质复合电极在开发用于葡萄糖传感和能量收集应用的高效酶生物燃料电池方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e237/12024719/cb1e834ff6a6/biosensors-15-00246-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e237/12024719/5a70929a6d2b/biosensors-15-00246-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e237/12024719/903f381b9fc5/biosensors-15-00246-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e237/12024719/802dfed64c9b/biosensors-15-00246-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e237/12024719/ce2d566db895/biosensors-15-00246-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e237/12024719/f583d0d4b815/biosensors-15-00246-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e237/12024719/199c70585204/biosensors-15-00246-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e237/12024719/0d6a454f2a28/biosensors-15-00246-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e237/12024719/cb1e834ff6a6/biosensors-15-00246-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e237/12024719/5a70929a6d2b/biosensors-15-00246-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e237/12024719/903f381b9fc5/biosensors-15-00246-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e237/12024719/802dfed64c9b/biosensors-15-00246-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e237/12024719/ce2d566db895/biosensors-15-00246-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e237/12024719/f583d0d4b815/biosensors-15-00246-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e237/12024719/199c70585204/biosensors-15-00246-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e237/12024719/0d6a454f2a28/biosensors-15-00246-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e237/12024719/cb1e834ff6a6/biosensors-15-00246-g008.jpg

相似文献

[1]
Dendritic Gold Nanoparticles Loaded on 3D Graphene-like Surface and Layer-by-Layer Assembly for Enhanced Glucose Biosensing.

Biosensors (Basel). 2025-4-12

[2]
Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode.

Biosens Bioelectron. 2013-8-30

[3]
Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode.

Biosens Bioelectron. 2007-1-15

[4]
A new self-assembled layer-by-layer glucose biosensor based on chitosan biopolymer entrapped enzyme with nitrogen doped graphene.

Bioelectrochemistry. 2014-6-21

[5]
A novel strategy for synthesis of hollow gold nanosphere and its application in electrogenerated chemiluminescence glucose biosensor.

Talanta. 2014-10

[6]
Fabrication of sensitive enzymatic biosensor based on multi-layered reduced graphene oxide added PtAu nanoparticles-modified hybrid electrode.

PLoS One. 2017-3-23

[7]
Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode.

Biosens Bioelectron. 2007-6-15

[8]
Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly(vinyl alcohol) core-shell nanocomposite.

Talanta. 2012-5-31

[9]
Electrodeposition of chitosan-ionic liquid-glucose oxidase biocomposite onto nano-gold electrode for amperometric glucose sensing.

Biosens Bioelectron. 2009-5-15

[10]
A luminol electrochemiluminescence aptasensor based on glucose oxidase modified gold nanoparticles for measurement of platelet-derived growth factor BB.

Talanta. 2015-1

引用本文的文献

[1]
AuNP/Magnetic Bead-Enhanced Electrochemical Sensor Toward Dual Saliva Alzheimer's Biomarkers Detection.

Sensors (Basel). 2025-6-30

本文引用的文献

[1]
growth of self-supported CuO nanorods from Cu-MOFs for glucose sensing and elucidation of the sensing mechanism.

Anal Methods. 2024-2-1

[2]
The Development of Reagentless Amperometric Glucose Biosensor Based on Gold Nanostructures, Prussian Blue and Glucose Oxidase.

Biosensors (Basel). 2023-10-20

[3]
Current advancements and prospects of enzymatic and non-enzymatic electrochemical glucose sensors.

Int J Biol Macromol. 2023-12-31

[4]
Wearable Electrochemical Glucose Sensors in Diabetes Management: A Comprehensive Review.

Chem Rev. 2023-6-28

[5]
An amperometric glucose biosensor based on PEDOT nanofibers.

RSC Adv. 2018-5-29

[6]
Glucose Oxidase, an Enzyme "Ferrari": Its Structure, Function, Production and Properties in the Light of Various Industrial and Biotechnological Applications.

Biomolecules. 2022-3-19

[7]
Electrochemical Sensing of Glucose Using Glucose Oxidase/PEDOT:4-Sulfocalix [4]arene/MXene Composite Modified Electrode.

Micromachines (Basel). 2022-2-16

[8]
Achieving a Stable High Surface Excess of Glucose Oxidase on Pristine Multiwalled Carbon Nanotubes for Glucose Quantification.

ACS Appl Bio Mater. 2019-4-15

[9]
Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing.

Sensors (Basel). 2021-7-8

[10]
Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions.

Biosens Bioelectron. 2020-10-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索