Suppr超能文献

一种基于切比雪夫图卷积和改进对抗网络的异常检测无监督融合策略。

An Unsupervised Fusion Strategy for Anomaly Detection via Chebyshev Graph Convolution and a Modified Adversarial Network.

作者信息

Manafi Hamideh, Mahan Farnaz, Izadkhah Habib

机构信息

Department of Computer Science, University of Tabriz, Tabriz 5166616471, Iran.

出版信息

Biomimetics (Basel). 2025 Apr 17;10(4):245. doi: 10.3390/biomimetics10040245.

Abstract

Anomalies refer to data inconsistent with the overall trend of the dataset and may indicate an error or an unusual event. Time series prediction can detect anomalies that happen unexpectedly in critical situations during the usage of a system or a network. Detecting or predicting anomalies in the traditional way is time-consuming and error-prone. Accordingly, the automatic recognition of anomalies is applicable to reduce the cost of defects and will pave the way for companies to optimize their performance. This unsupervised technique is an efficient way of detecting abnormal samples during the fluctuations of time series. In this paper, an unsupervised deep network is proposed to predict temporal information. The correlations between the neighboring samples are acquired to construct a graph of neighboring fluctuations. The extricated features related to the temporal distribution of the time samples in the constructed graph representation are used to impose the Chebyshev graph convolution layers. The output is used to train an adversarial network for anomaly detection. A modification is performed for the generative adversarial network's cost function to perfectly match our purpose. Thus, the proposed method is based on combining generative adversarial networks (GANs) and a Chebyshev graph, which has shown good results in various domains. Accordingly, the performance of the proposed fusion approach of a Chebyshev graph-based modified adversarial network (Cheb-MA) is evaluated on the Numenta dataset. The proposed model was evaluated based on various evaluation indices, including the average F1-score, and was able to reach a value of 82.09%, which is very promising compared to recent research.

摘要

异常值是指与数据集的整体趋势不一致的数据,可能表明存在错误或异常事件。时间序列预测可以检测在系统或网络使用过程中关键情况下意外发生的异常。以传统方式检测或预测异常既耗时又容易出错。因此,自动识别异常适用于降低缺陷成本,并将为公司优化其性能铺平道路。这种无监督技术是在时间序列波动期间检测异常样本的有效方法。本文提出了一种无监督深度网络来预测时间信息。获取相邻样本之间的相关性以构建相邻波动图。在构建的图表示中,与时间样本的时间分布相关的提取特征用于施加切比雪夫图卷积层。输出用于训练用于异常检测的对抗网络。对生成对抗网络的成本函数进行了修改,以完美匹配我们的目的。因此,所提出的方法基于生成对抗网络(GAN)和切比雪夫图的结合,在各个领域都取得了良好的效果。因此,在Numenta数据集上评估了基于切比雪夫图的改进对抗网络(Cheb-MA)的融合方法的性能。所提出的模型基于包括平均F1分数在内的各种评估指标进行评估,并且能够达到82.09%的值,与最近的研究相比非常有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbb7/12024957/643dfe9432e1/biomimetics-10-00245-g001a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验