Suppr超能文献

基于生成对抗合成邻居的无监督异常检测

Generative adversarial synthetic neighbors-based unsupervised anomaly detection.

作者信息

Chen Lan, Jiang Hong, Wang Lizhong, Li Jun, Yu Manhua, Shen Yong, Du Xusheng

机构信息

School of mechanical engineering, Xinjiang University, Urumqi, 830047, China.

School of computer science and technology, Xinjiang University, Urumqi, 830046, China.

出版信息

Sci Rep. 2025 Jan 2;15(1):16. doi: 10.1038/s41598-024-84863-6.

Abstract

Anomaly detection is crucial for the stable operation of mechanical systems, securing financial transactions, and ensuring network security, among other critical areas. Presently, Generative Adversarial Networks (GANs)-based anomaly detection methods either require labeled data for semi-supervised learning or face challenges with low computational efficiency and poor generalization when dealing with complex distributions. Aim to address these limitations, we introduce a generative adversarial synthetic neighbors-based unsupervised anomaly detection (GASN) method. This method integrates generative adversarial networks and neighborhood analysis techniques, enhancing anomaly detection performance through a two-stage detection process. In the first stage, the generative adversarial networks are trained on original dataset that containing a small number of anomaly objects. To minimize errors, the generator focuses on modeling majority object distributions, thus mapping noise to synthetic data resembling normal objects. In the second stage, GASN employs neighborhood analysis techniques to compare the similarity between original and synthetic data, assigning an anomaly factor to each object. This approach allows GASN to sensitively detect subtle anomaly objects. Extensive experiments conducted on twelve public datasets with five state-of-the-art methods demonstrate that the proposed method improves the AUC by 9.93% over the second-best method, proving its effectiveness in anomaly detection.

摘要

异常检测对于机械系统的稳定运行、保障金融交易以及确保网络安全等关键领域至关重要。目前,基于生成对抗网络(GAN)的异常检测方法要么需要有标签数据进行半监督学习,要么在处理复杂分布时面临计算效率低和泛化能力差的挑战。为了解决这些局限性,我们引入了一种基于生成对抗合成邻域的无监督异常检测(GASN)方法。该方法将生成对抗网络和邻域分析技术相结合,通过两阶段检测过程提高异常检测性能。在第一阶段,生成对抗网络在包含少量异常对象的数据集中进行训练。为了最小化误差,生成器专注于对多数对象分布进行建模,从而将噪声映射到类似于正常对象的合成数据。在第二阶段,GASN采用邻域分析技术来比较原始数据和合成数据之间的相似性,为每个对象分配一个异常因子。这种方法使GASN能够灵敏地检测出细微的异常对象。在十二个公共数据集上与五种先进方法进行的大量实验表明,所提出的方法比第二优方法的AUC提高了9.93%,证明了其在异常检测中的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75e/11696731/af16c0cd6a9b/41598_2024_84863_Fig4_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验