Kokol Vanja, Lakshmanan Subramanian, Vivod Vera
Faculty of Mechanical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia.
Gels. 2025 Apr 3;11(4):265. doi: 10.3390/gels11040265.
Cellulose nanofibrils (CNFs) are promising materials for flexible and green supercapacitor electrodes, while TiCT MXene exhibits high specific capacitance. However, the diffusion limitation of ions and chemical instability in the generally used highly basic (KOH, MXene oxidation) or acidic (HSO, CNF degradation) electrolytes limits their performance and durability. Herein, freestanding CNF/MXene cryogel membranes were prepared by deep freeze-casting (at -50 and -80 °C), using different weight percentages of components (10, 50, 90), and evaluated for their structural and physico-chemical stability in other less aggressive aqueous electrolyte solutions (Na/Mg/Mn/K-SO, NaCO), to examine the influence of the ions transport on their pseudocapacitive properties. While the membrane prepared with 50 wt% (2.5 mg/cm) of MXene loading at -80 °C shrank in a basic NaCO electrolyte, the capacitance was performed via the forming of an electroactive layer on its interface, giving it high stability (90% after 3 days of cycling) but lower capacitance (8 F/g at 2 mV/s) than in HSO (25 F/g). On the contrary, slightly acidic electrolytes extended the cations' transport path due to excessive but still size-limited diffusion of the hydrated ions (SO > Na > Mn > Mg) during membrane swelling, which blocked it, reducing the electroactive surface area and lowering conductivities (<3 F/g).
纤维素纳米纤维(CNFs)是用于柔性绿色超级电容器电极的有前途的材料,而TiCT MXene具有高比电容。然而,在常用的高碱性(KOH,MXene氧化)或酸性(HSO,CNF降解)电解质中,离子的扩散限制和化学不稳定性限制了它们的性能和耐久性。在此,通过深度冷冻浇铸(在-50和-80°C)制备了独立的CNF/MXene冷冻凝胶膜,使用不同重量百分比的组分(10、50、90),并在其他腐蚀性较小的水性电解质溶液(Na/Mg/Mn/K-SO、NaCO)中评估其结构和物理化学稳定性,以研究离子传输对其赝电容性能的影响。虽然在-80°C下用50 wt%(2.5 mg/cm)的MXene负载制备的膜在碱性NaCO电解质中收缩,但通过在其界面形成电活性层来实现电容,使其具有高稳定性(循环3天后为90%),但电容(在2 mV/s时为8 F/g)低于在HSO中(25 F/g)。相反,微酸性电解质由于水合离子(SO>Na>Mn>Mg)在膜膨胀过程中过度但仍受尺寸限制的扩散而延长了阳离子的传输路径,这会阻塞该路径,减少电活性表面积并降低电导率(<3 F/g)。