Ye Xiuhong, Chen Sihui, Xiong Wei, Wang Fan, Chan Hon Fai, Lai Haocheng, Guo Xiangyu, Yang Tingting, Shen Shuhao, Chen Hang, Wang Wenxuan, Liu Guei-Sheung, Guo Yonglong, Chen Jiansu
Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China.
Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, 510632, China.
Adv Sci (Weinh). 2025 Jun;12(22):e2417363. doi: 10.1002/advs.202417363. Epub 2025 Apr 25.
Antisense oligonucleotide (ASO) therapy holds promise in gene therapy but faces challenges due to poor delivery efficiency and limited evaluation models. This investigation employs magnetic nanoparticles (MNPs) to augment the delivery efficiency of ASOs. It assesses their distribution and therapeutic efficacy across various models, including retinal explants from mice and macaques or human retinal and inner ear organoids. Retinal explants from both mice and monkeys are methodically arranged to expose the ganglion cell layer (GCL) or the photoreceptor layer (PL). MNPs markedly enhanced the penetration and targeting of ASOs, resulting in a 60% accumulation in the GCL or 72% in the photoreceptors. Furthermore, an in vitro biomimetic model of the neuroretina-RPE/choroid-sclera complex is developed to examine ASO distribution under dynamic flow conditions. Moreover, the utilization of MNP-assisted ASO-Cy3 markedly enhanced transfection efficiency within human retinal and inner ear organoids, resulting in an increase in positively transfected cells to 60% and 70%, respectively. Here, for the first time, an MNP-explant-organoid platform is carried out for the promotion of ASO transfection efficiency, therapeutic screening and targeted delivery. This development paves the way for investigating novel gene therapy strategies targeting retinal diseases.
反义寡核苷酸(ASO)疗法在基因治疗方面具有潜力,但由于递送效率低下和评估模型有限而面临挑战。本研究采用磁性纳米颗粒(MNP)来提高ASO的递送效率。它评估了它们在各种模型中的分布和治疗效果,包括来自小鼠和猕猴的视网膜外植体或人类视网膜和内耳类器官。对来自小鼠和猴子的视网膜外植体进行系统排列,以暴露神经节细胞层(GCL)或感光细胞层(PL)。MNP显著增强了ASO的穿透和靶向性,导致在GCL中积累60%,在感光细胞中积累72%。此外,还建立了神经视网膜-RPE/脉络膜-巩膜复合体的体外仿生模型,以研究动态流动条件下ASO的分布。此外,利用MNP辅助的ASO-Cy3显著提高了人类视网膜和内耳类器官内的转染效率,使阳性转染细胞分别增加到60%和70%。在此,首次开展了MNP-外植体-类器官平台以提高ASO转染效率、进行治疗筛选和靶向递送。这一进展为研究针对视网膜疾病的新型基因治疗策略铺平了道路。