Nardelli Bruno Buongiorno, Iudicone Daniele
Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, Napoli, Italy.
Stazione Zoologica Anton Dohrn, Napoli, Italy.
Sci Adv. 2025 Apr 25;11(17):eadq3532. doi: 10.1126/sciadv.adq3532.
Revealing the ongoing changes in ocean dynamics and their impact on marine ecosystems requires the joint analysis of multiple variables. However, global observational records only cover a few decades, posing a challenge in the separation of climatic trends from internal dynamical modes. Here, we apply an empirical stochastic model to identify the emergent patterns of trends in six fundamental components of upper ocean physics. We analyze a data-driven reconstruction of the ocean state covering the 1993-2018 period. We found that including temporal derivatives in the state vector enhances the description of the ocean's dynamical system. Once Pacific oscillations are properly accounted for, averaged surface warming appears >60% faster, and a deep reshaping of the seascape is revealed. A clustering of the trend patterns identifies the main factors that drive observed trends in chlorophyll a concentration. This data-driven approach provides a wider framework for empirical climate modeling.
揭示海洋动力学的持续变化及其对海洋生态系统的影响需要对多个变量进行联合分析。然而,全球观测记录仅涵盖了几十年,这在将气候趋势与内部动力模式分离方面构成了挑战。在这里,我们应用一个经验随机模型来识别上层海洋物理学六个基本组成部分中趋势的涌现模式。我们分析了一个涵盖1993 - 2018年期间的海洋状态的数据驱动重建。我们发现,在状态向量中纳入时间导数可以增强对海洋动力系统的描述。一旦对太平洋振荡进行了适当考虑,平均表面变暖的速度似乎加快了60%以上,并且揭示了海洋景观的深度重塑。趋势模式的聚类确定了驱动叶绿素a浓度观测趋势的主要因素。这种数据驱动的方法为经验气候建模提供了一个更广泛的框架。