Zhou Pai, Zhang Hui-Zhen, Li Tingmei, Zhang Zhong-Shan, Chen Yu-Hui, Zhang Xiangdong
Key Laboratory of advanced optoelectronic quantum architecture and measurement of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China.
Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China.
Sci Adv. 2025 Apr 25;11(17):eadu0976. doi: 10.1126/sciadv.adu0976.
Storing and retrieving photonic qubits are key functionalities in future optical quantum networks, and integrating scalable optical-memory units is crucial as these networks expand. However, attempts to combine silicon photonics and erbium ions for telecom memories, without losing the scalable and low-loss properties of silicon chips, face challenges because of limited light-matter interactions and potential extra decoherence. Here, we present an efficient silicon-chip platform using bound states in the continuum to overcome these limitations. In addition to a low propagation loss of 0.5 ± 0.5 decibels per centimeter, our experiments demonstrate an order-of-magnitude enhancement in light absorption compared to previous traditional silicon hybrid designs. Using these properties, we demonstrated photon echoes in our waveguide structures, revealing a coherence time of 2.6 ± 0.6 microseconds at zero magnetic field, closely matching that of bulk crystals. These characteristics make the bound state in the continuum platform a promising candidate for realizing integrated optical memories for quantum network applications.
存储和检索光子量子比特是未来光量子网络的关键功能,随着这些网络的扩展,集成可扩展的光存储单元至关重要。然而,在不损失硅芯片的可扩展性和低损耗特性的情况下,尝试将硅光子学与铒离子结合用于电信存储器,由于光与物质的相互作用有限以及潜在的额外退相干,面临着挑战。在此,我们展示了一个利用连续统中的束缚态来克服这些限制的高效硅芯片平台。除了每厘米0.5±0.5分贝的低传播损耗外,我们的实验表明,与以前的传统硅混合设计相比,光吸收提高了一个数量级。利用这些特性,我们在波导结构中展示了光子回波,揭示了在零磁场下2.6±0.6微秒的相干时间,与块状晶体的相干时间非常匹配。这些特性使连续统平台中的束缚态成为实现用于量子网络应用的集成光存储器的有希望的候选者。