Suppr超能文献

基于模糊深度学习的卵巢癌检测与分类的深度学习方法。

A deep learning approach for ovarian cancer detection and classification based on fuzzy deep learning.

机构信息

Faculty of Science, Benha University, Benha, Egypt.

Computer Science Department, Arab East Colleges, Riyadh, Saudi Arabia.

出版信息

Sci Rep. 2024 Nov 2;14(1):26463. doi: 10.1038/s41598-024-75830-2.

Abstract

Different oncologists make their own decisions about the detection and classification of the type of ovarian cancer from histopathological whole slide images. However, it is necessary to have an automated system that is more accurate and standardized for decision-making, which is essential for early detection of ovarian cancer. To help doctors, an automated detection and classification of ovarian cancer system is proposed. This model starts by extracting the main features from the histopathology images based on the ResNet-50 model to detect and classify the cancer. Then, recursive feature elimination based on a decision tree is introduced to remove unnecessary features extracted during the feature extraction process. Adam optimizers were implemented to optimize the network's weights during training data. Finally, the advantages of combining deep learning and fuzzy logic are combined to classify the images of ovarian cancer. The dataset consists of 288 hematoxylin and eosin (H&E) stained whole slides with clinical information from 78 patients. H&E-stained Whole Slide Images (WSIs), including 162 effective and 126 invalid WSIs were obtained from different tissue blocks of post-treatment specimens. Experimental results can diagnose ovarian cancer with a potential accuracy of 98.99%, sensitivity of 99%, specificity of 98.96%, and F1-score of 98.99%. The results show promising results indicating the potential of using fuzzy deep-learning classifiers for predicting ovarian cancer.

摘要

不同的肿瘤学家根据组织病理学全切片图像自行决定卵巢癌的检测和分类。然而,为了做出更准确和标准化的决策,有必要建立一个自动化系统,这对于早期发现卵巢癌至关重要。为了帮助医生,提出了一种自动检测和分类卵巢癌的系统。该模型首先基于 ResNet-50 模型从组织病理学图像中提取主要特征,以检测和分类癌症。然后,引入基于决策树的递归特征消除,以去除特征提取过程中提取的不必要特征。在训练数据期间,实现了 Adam 优化器来优化网络的权重。最后,结合深度学习和模糊逻辑的优势对卵巢癌图像进行分类。该数据集包含 78 名患者的 288 张苏木精和曙红(H&E)染色全幻灯片以及临床信息。从治疗后标本的不同组织块中获得了 H&E 染色的全幻灯片图像(WSI),包括 162 张有效和 126 张无效 WSI。实验结果可以以 98.99%的潜在准确率、99%的灵敏度、98.96%的特异性和 98.99%的 F1 分数诊断卵巢癌。结果表明有希望的结果,表明使用模糊深度学习分类器预测卵巢癌的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1249/11531531/015612a230b3/41598_2024_75830_Fig1_HTML.jpg

相似文献

5
VENet: Variational energy network for gland segmentation of pathological images and early gastric cancer diagnosis of whole slide images.
Comput Methods Programs Biomed. 2024 Jun;250:108178. doi: 10.1016/j.cmpb.2024.108178. Epub 2024 Apr 21.
7
Automated curation of large-scale cancer histopathology image datasets using deep learning.
Histopathology. 2024 Jun;84(7):1139-1153. doi: 10.1111/his.15159. Epub 2024 Feb 26.
8
Concatenated CNN-Based Pneumonia Detection Using a Fuzzy-Enhanced Dataset.
Sensors (Basel). 2024 Oct 21;24(20):6750. doi: 10.3390/s24206750.
9
Improved rank-based recursive feature elimination method based ovarian cancer detection model via customized deep architecture.
Comput Methods Programs Biomed. 2024 Nov;256:108358. doi: 10.1016/j.cmpb.2024.108358. Epub 2024 Aug 5.
10
Weakly supervised deep learning for prediction of treatment effectiveness on ovarian cancer from histopathology images.
Comput Med Imaging Graph. 2022 Jul;99:102093. doi: 10.1016/j.compmedimag.2022.102093. Epub 2022 Jun 16.

本文引用的文献

1
Automatic renal mass segmentation and classification on CT images based on 3D U-Net and ResNet algorithms.
Front Oncol. 2023 May 18;13:1169922. doi: 10.3389/fonc.2023.1169922. eCollection 2023.
2
Artificial Intelligence in Medicine.
N Engl J Med. 2023 Mar 30;388(13):1220-1221. doi: 10.1056/NEJMe2206291.
3
Artificial Intelligence for Cancer Detection-A Bibliometric Analysis and Avenues for Future Research.
Curr Oncol. 2023 Jan 29;30(2):1626-1647. doi: 10.3390/curroncol30020125.
5
Artificial intelligence in lung cancer diagnosis and prognosis: Current application and future perspective.
Semin Cancer Biol. 2023 Feb;89:30-37. doi: 10.1016/j.semcancer.2023.01.006. Epub 2023 Jan 20.
7
Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer.
Nat Med. 2023 Feb;29(2):430-439. doi: 10.1038/s41591-022-02134-1. Epub 2023 Jan 9.
8
Machine learning-based rapid diagnosis of human borderline ovarian cancer on second-harmonic generation images.
Biomed Opt Express. 2021 Aug 16;12(9):5658-5669. doi: 10.1364/BOE.429918. eCollection 2021 Sep 1.
9
Antagomir technology in the treatment of different types of cancer.
Epigenomics. 2021 Apr;13(7):481-484. doi: 10.2217/epi-2020-0439. Epub 2021 Mar 10.
10
Hereditary breast and ovarian cancer (HBOC): review of its molecular characteristics, screening, treatment, and prognosis.
Breast Cancer. 2021 Nov;28(6):1167-1180. doi: 10.1007/s12282-020-01148-2. Epub 2020 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验