Suppr超能文献

Fascin-1的动态磷酸化调控脊髓损伤后小胶质细胞的吞噬作用和神经功能恢复。

Dynamic phosphorylation of Fascin-1 orchestrates microglial phagocytosis and neurological recovery after spinal cord injury.

作者信息

Liu Yanchang, Yao Fei, Li Ziyu, Jiang Yan, Li Jianjian, Yu Shuisheng, Hu Xuyang, Ouyang Fangru, Zheng Meige, Cheng Li, Jing Juehua

机构信息

Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.

Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.

出版信息

J Neuroinflammation. 2025 Apr 25;22(1):121. doi: 10.1186/s12974-025-03445-z.

Abstract

The persistence of myelin debris after spinal cord injury (SCI) constitutes a formidable barrier to axonal regeneration, remyelination, and functional recovery by initiating inflammatory cascades. Microglia, known for their superior phagocytic and degradative capabilities, are crucial in clearing myelin debris. Yet, the molecular mechanisms governing their function remain elusive. Our previous research has identified a sustained upregulation of Fascin-1, an actin-binding protein essential for phagocytosis, in Cx3cr1 microglia after SCI. Here, we reveal that ablation of microglial Fascin-1 exacerbates neuronal loss and hampers motor recovery after SCI, correlating with diminished microglial phagocytic activity in Cx3cr1;Fascin-1 mice. We demonstrated that dysregulated Fascin-1 phosphorylation impairs microglial phagocytosis, linked to the upstream Mas1/Protein kinase C gamma (PKCγ) axis. Pharmacologic activation of the Mas1/PKC axis to drive Fascin-1 phosphorylation in microglia restores phagocytic function, thereby alleviating neuronal loss and facilitating neurological recovery after SCI. Our findings underscore the critical role of Fascin-1 phosphorylation in microglial phagocytosis and highlight the Mas1/PKCγ axis as a promising therapeutic target for SCI.

摘要

脊髓损伤(SCI)后髓鞘碎片的持续存在通过引发炎症级联反应,对轴突再生、髓鞘再生和功能恢复构成了巨大障碍。小胶质细胞以其卓越的吞噬和降解能力而闻名,在清除髓鞘碎片方面起着关键作用。然而,调控其功能的分子机制仍不清楚。我们之前的研究已经确定,SCI后Cx3cr1小胶质细胞中肌动蛋白结合蛋白Fascin-1持续上调,该蛋白对吞噬作用至关重要。在这里,我们发现小胶质细胞Fascin-1的缺失会加剧SCI后的神经元损失并阻碍运动恢复,这与Cx3cr1;Fascin-1小鼠中小胶质细胞吞噬活性降低相关。我们证明,Fascin-1磷酸化失调会损害小胶质细胞的吞噬作用,这与上游Mas1/蛋白激酶Cγ(PKCγ)轴有关。对Mas1/PKC轴进行药理激活以驱动小胶质细胞中Fascin-1磷酸化可恢复吞噬功能,从而减轻神经元损失并促进SCI后的神经功能恢复。我们的研究结果强调了Fascin-1磷酸化在小胶质细胞吞噬作用中的关键作用,并突出了Mas1/PKCγ轴作为SCI一个有前景的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d9d/12032802/655d944ff114/12974_2025_3445_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验