使用计算病理学预测原位肺鳞状细胞癌的演变
Predicting the Evolution of Lung Squamous Cell Carcinoma In Situ Using Computational Pathology.
作者信息
Vigdorovits Alon, Olteanu Gheorghe-Emilian, Tica Ovidiu, Pascalau Andrei, Boros Monica, Pop Ovidiu
机构信息
Department of Pathology, Bihor County Clinical Emergency Hospital, 410169 Oradea, Romania.
Department of Morphological Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
出版信息
Bioengineering (Basel). 2025 Apr 2;12(4):377. doi: 10.3390/bioengineering12040377.
Lung squamous cell carcinoma in situ (SCIS) is the preinvasive precursor lesion of lung squamous cell carcinoma (SCC). Only around two-thirds of these lesions progress to invasive cancer, while one-third undergo spontaneous regression, which presents a significant clinical challenge due to the risk of overtreatment. The ability to predict the evolution of SCIS lesions can significantly impact patient management. Our study explores the use of computational pathology in predicting the evolution of SCIS. We used a dataset consisting of 112 H&E-stained whole slide images (WSIs) that were obtained from the Image Data Resource public repository. The dataset corresponded to tumors of patients who underwent biopsies of SCIS lesions and were subsequently followed up by bronchoscopy and CT scans to monitor for progression to SCC. We used this dataset to train two models: a pathomics-based ridge classifier trained on 80 principal components derived from almost 2000 extracted features and a deep convolutional neural network with a modified ResNet18 architecture. The performance of both approaches in predicting progression was assessed. The pathomics-based ridge classifier model obtained an F1-score of 0.77, precision of 0.80, and recall of 0.77. The deep learning model performance was similar, with a WSI-level F1-score of 0.80, precision of 0.71, and recall of 0.90. These findings highlight the potential of computational pathology approaches in providing insights into the evolution of SCIS. Larger datasets will be required in order to train highly accurate models. In the future, computational pathology could be used in predicting outcomes in other preinvasive lesions.
肺原位鳞状细胞癌(SCIS)是肺鳞状细胞癌(SCC)的侵袭前前驱病变。这些病变中只有约三分之二会进展为浸润性癌,而三分之一会自发消退,由于存在过度治疗的风险,这带来了重大的临床挑战。预测SCIS病变演变的能力会对患者管理产生重大影响。我们的研究探索了使用计算病理学来预测SCIS的演变。我们使用了一个由112张苏木精和伊红(H&E)染色的全玻片图像(WSIs)组成的数据集,这些图像来自图像数据资源公共存储库。该数据集对应于接受SCIS病变活检的患者的肿瘤,随后通过支气管镜检查和CT扫描进行随访,以监测是否进展为SCC。我们使用这个数据集训练了两个模型:一个基于病理组学的岭分类器,它基于从近2000个提取特征中得出的80个主成分进行训练;以及一个具有修改后的ResNet18架构的深度卷积神经网络。评估了这两种方法在预测进展方面的性能。基于病理组学的岭分类器模型的F1分数为0.77,精确率为0.80,召回率为0.77。深度学习模型的性能与之相似,WSI水平的F1分数为0.80,精确率为0.71,召回率为0.90。这些发现凸显了计算病理学方法在洞察SCIS演变方面的潜力。需要更大的数据集来训练高度准确的模型。未来,计算病理学可用于预测其他侵袭前病变的结果。
相似文献
Bioengineering (Basel). 2025-4-2
Lancet Digit Health. 2024-1
Cancers (Basel). 2022-10-28
本文引用的文献
Front Oncol. 2023-7-19
Nat Commun. 2023-1-28
Cancers (Basel). 2022-10-26
BMC Bioinformatics. 2021-9-10