Suppr超能文献

基于深度学习的肺癌及组织病理全切片图像模拟物六分型分类器:一项回顾性研究。

Deep learning-based six-type classifier for lung cancer and mimics from histopathological whole slide images: a retrospective study.

机构信息

Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.

Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.

出版信息

BMC Med. 2021 Mar 29;19(1):80. doi: 10.1186/s12916-021-01953-2.

Abstract

BACKGROUND

Targeted therapy and immunotherapy put forward higher demands for accurate lung cancer classification, as well as benign versus malignant disease discrimination. Digital whole slide images (WSIs) witnessed the transition from traditional histopathology to computational approaches, arousing a hype of deep learning methods for histopathological analysis. We aimed at exploring the potential of deep learning models in the identification of lung cancer subtypes and cancer mimics from WSIs.

METHODS

We initially obtained 741 WSIs from the First Affiliated Hospital of Sun Yat-sen University (SYSUFH) for the deep learning model development, optimization, and verification. Additional 318 WSIs from SYSUFH, 212 from Shenzhen People's Hospital, and 422 from The Cancer Genome Atlas were further collected for multi-centre verification. EfficientNet-B5- and ResNet-50-based deep learning methods were developed and compared using the metrics of recall, precision, F1-score, and areas under the curve (AUCs). A threshold-based tumour-first aggregation approach was proposed and implemented for the label inferencing of WSIs with complex tissue components. Four pathologists of different levels from SYSUFH reviewed all the testing slides blindly, and the diagnosing results were used for quantitative comparisons with the best performing deep learning model.

RESULTS

We developed the first deep learning-based six-type classifier for histopathological WSI classification of lung adenocarcinoma, lung squamous cell carcinoma, small cell lung carcinoma, pulmonary tuberculosis, organizing pneumonia, and normal lung. The EfficientNet-B5-based model outperformed ResNet-50 and was selected as the backbone in the classifier. Tested on 1067 slides from four cohorts of different medical centres, AUCs of 0.970, 0.918, 0.963, and 0.978 were achieved, respectively. The classifier achieved high consistence to the ground truth and attending pathologists with high intraclass correlation coefficients over 0.873.

CONCLUSIONS

Multi-cohort testing demonstrated our six-type classifier achieved consistent and comparable performance to experienced pathologists and gained advantages over other existing computational methods. The visualization of prediction heatmap improved the model interpretability intuitively. The classifier with the threshold-based tumour-first label inferencing method exhibited excellent accuracy and feasibility in classifying lung cancers and confused nonneoplastic tissues, indicating that deep learning can resolve complex multi-class tissue classification that conforms to real-world histopathological scenarios.

摘要

背景

靶向治疗和免疫疗法对肺癌分类的准确性以及良恶性疾病的鉴别提出了更高的要求。数字全切片图像(WSI)见证了从传统组织病理学向计算方法的转变,引发了深度学习方法在组织病理学分析中的热潮。我们旨在探索深度学习模型在从 WSI 中识别肺癌亚型和癌症模拟物方面的潜力。

方法

我们最初从中山大学附属第一医院(SYSUFH)获得了 741 张 WSI 用于深度学习模型的开发、优化和验证。此外,还从 SYSUFH 获得了 318 张 WSI、从深圳市人民医院获得了 212 张 WSI 和从癌症基因组图谱(TCGA)获得了 422 张 WSI,用于多中心验证。使用召回率、准确率、F1 分数和曲线下面积(AUC)等指标,开发并比较了基于 EfficientNet-B5 和 ResNet-50 的深度学习方法。提出并实现了一种基于阈值的肿瘤优先聚合方法,用于对具有复杂组织成分的 WSI 进行标签推断。来自 SYSUFH 的 4 位不同级别的病理学家对所有测试幻灯片进行了盲法审查,并将诊断结果与表现最佳的深度学习模型进行了定量比较。

结果

我们开发了第一个基于深度学习的六类型分类器,用于肺腺癌、肺鳞癌、小细胞肺癌、肺结核、机化性肺炎和正常肺的组织学 WSI 分类。基于 EfficientNet-B5 的模型优于 ResNet-50,被选为分类器的骨干。在来自四个不同医疗中心的 1067 张幻灯片上进行测试,分别获得了 0.970、0.918、0.963 和 0.978 的 AUC。该分类器与金标准和主治病理学家具有高度的一致性,组内相关系数超过 0.873。

结论

多队列测试表明,我们的六类型分类器与经验丰富的病理学家达到了一致且可比的性能,并优于其他现有的计算方法。预测热图的可视化直观地提高了模型的可解释性。基于阈值的肿瘤优先标签推断方法的分类器在分类肺癌和非肿瘤组织方面表现出了优异的准确性和可行性,表明深度学习可以解决符合实际组织病理学场景的复杂多组织分类问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/845d/8006383/d182750427a5/12916_2021_1953_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验