Suppr超能文献

基于纵向数据分析和超图正则化多任务特征选择的阿尔茨海默病多模态分类

Multimodal Classification of Alzheimer's Disease Using Longitudinal Data Analysis and Hypergraph Regularized Multi-Task Feature Selection.

作者信息

Wang Shuaiqun, Zhang Huan, Kong Wei

机构信息

College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai 201306, China.

出版信息

Bioengineering (Basel). 2025 Apr 5;12(4):388. doi: 10.3390/bioengineering12040388.

Abstract

Alzheimer's disease, an irreversible neurodegenerative disorder, manifests through the progressive deterioration of memory and cognitive functions. While magnetic resonance imaging has become an indispensable neuroimaging modality for Alzheimer's disease diagnosis and monitoring, current diagnostic paradigms predominantly rely on single-time-point data analysis, neglecting the inherent longitudinal nature of neuroimaging applications. Therefore, in this paper, we propose a multi-task feature selection algorithm for Alzheimer's disease classification based on longitudinal imaging and hypergraphs (THM2TFS). Our methodology establishes a multi-task learning framework where feature selection at each temporal interval is treated as an individual task within each imaging modality. To address temporal dependencies, we implement group sparse regularization with two critical components: (1) a hypergraph-induced regularization term that captures high-order structural relationships among subjects through hypergraph Laplacian modeling, and (2) a fused sparse Laplacian regularization term that encodes progressive pathological changes in brain regions across time points. The selected features are subsequently integrated via multi-kernel support vector machines for final classification. We used functional magnetic resonance imaging and structural functional magnetic resonance imaging data from Alzheimer's Disease Neuroimaging Initiative at four different time points (baseline (T1), 6th month (T2), 12th month (T3), and 24th month (T4)) to evaluate our method. The experimental results show that the accuracy rates of 96.75%, 93.45, and 83.78 for the three groups of classification tasks (AD vs. NC, MCI vs. NC and AD vs. MCI) are obtained, respectively, which indicates that the proposed method can not only capture the relevant information between longitudinal image data well, but also the classification accuracy of Alzheimer's disease is improved, and it helps to identify the biomarkers associated with Alzheimer's disease.

摘要

阿尔茨海默病是一种不可逆的神经退行性疾病,其表现为记忆和认知功能的逐渐衰退。虽然磁共振成像已成为阿尔茨海默病诊断和监测不可或缺的神经成像方式,但目前的诊断模式主要依赖于单时间点数据分析,而忽略了神经成像应用固有的纵向特性。因此,在本文中,我们提出了一种基于纵向成像和超图的阿尔茨海默病分类多任务特征选择算法(THM2TFS)。我们的方法建立了一个多任务学习框架,其中每个时间间隔的特征选择被视为每个成像模态内的一个单独任务。为了解决时间依赖性,我们实施了具有两个关键组件的组稀疏正则化:(1)一个超图诱导正则化项,通过超图拉普拉斯建模捕获受试者之间的高阶结构关系;(2)一个融合稀疏拉普拉斯正则化项,对跨时间点脑区的渐进性病理变化进行编码。随后,通过多核支持向量机对所选特征进行整合以进行最终分类。我们使用了来自阿尔茨海默病神经成像计划在四个不同时间点(基线(T1)、第6个月(T2)、第12个月(T3)和第24个月(T4))的功能磁共振成像和结构功能磁共振成像数据来评估我们的方法。实验结果表明,三组分类任务(AD与NC、MCI与NC以及AD与MCI)的准确率分别为96.75%、93.45%和83.78%,这表明所提出的方法不仅能够很好地捕获纵向图像数据之间的相关信息,而且提高了阿尔茨海默病的分类准确率,有助于识别与阿尔茨海默病相关的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777c/12025285/fa8768950e4d/bioengineering-12-00388-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验