Zaman Wajid, Ayaz Asma, Puppe Daniel
Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea.
Faculty of Sports Science, Ningbo University, Ningbo 315211, China.
Biology (Basel). 2025 Apr 17;14(4):433. doi: 10.3390/biology14040433.
Biogeochemical cycles are fundamental to the functioning of plant-soil systems, driving the availability and transfer of essential nutrients (like carbon (C), nitrogen (N), phosphorus (P), and sulfur (S)) as well as beneficial elements (like silicon (Si)). These interconnected cycles regulate ecosystem productivity, biodiversity, and resilience, forming the basis of critical ecosystem services. This review explores the mechanisms and dynamics of biogeochemical C, N, P, S, and Si cycles, emphasizing their roles in nutrient/element cycling, plant growth, and soil health, especially in agricultural plant-soil systems. The coupling between these cycles, facilitated mainly by microbial communities, highlights the complexity of nutrient/element interactions and corresponding implications for ecosystem functioning and stability. Human activities including industrial agriculture, deforestation, and pollution disrupt the underlying natural processes leading to nutrient/element imbalances, soil degradation, and susceptibility to climate impacts. Technological advancements such as artificial intelligence, remote sensing, and real-time soil monitoring offer innovative solutions for studying and managing biogeochemical cycles. These tools enable precise nutrient/element management, identification of ecosystem vulnerabilities, and the development of sustainable practices. Despite significant progress, research gaps remain, particularly in understanding the interlinkages between biogeochemical cycles and their responses to global change. This review underscores the need for integrated approaches that combine interdisciplinary research, technological innovation, and sustainable land-use strategies to mitigate human-induced disruptions and enhance ecosystem resilience. By addressing these challenges, biogeochemical processes and corresponding critical ecosystem services can be safeguarded, ensuring the sustainability of plant-soil systems in the face of environmental change.
生物地球化学循环是植物 - 土壤系统功能的基础,驱动着必需养分(如碳(C)、氮(N)、磷(P)和硫(S))以及有益元素(如硅(Si))的有效性和转移。这些相互关联的循环调节着生态系统的生产力、生物多样性和恢复力,构成了关键生态系统服务的基础。本综述探讨了生物地球化学碳、氮、磷、硫和硅循环的机制和动态,强调了它们在养分/元素循环、植物生长和土壤健康中的作用,特别是在农业植物 - 土壤系统中。这些循环之间的耦合主要由微生物群落促进,突出了养分/元素相互作用的复杂性以及对生态系统功能和稳定性的相应影响。包括工业化农业、森林砍伐和污染在内的人类活动破坏了潜在的自然过程,导致养分/元素失衡、土壤退化以及对气候影响的易感性。人工智能、遥感和实时土壤监测等技术进步为研究和管理生物地球化学循环提供了创新解决方案。这些工具能够实现精确的养分/元素管理、识别生态系统脆弱性以及制定可持续实践。尽管取得了重大进展,但研究差距仍然存在,特别是在理解生物地球化学循环之间的相互联系及其对全球变化的响应方面。本综述强调需要综合方法,将跨学科研究、技术创新和可持续土地利用策略结合起来,以减轻人为干扰并增强生态系统恢复力。通过应对这些挑战,可以保障生物地球化学过程和相应的关键生态系统服务,确保植物 - 土壤系统在环境变化面前的可持续性。