Suppr超能文献

CRISPR-MFH:一种用于改进CRISPR-Cas9脱靶预测的具有多特征编码的轻量级混合深度学习框架。

CRISPR-MFH: A Lightweight Hybrid Deep Learning Framework with Multi-Feature Encoding for Improved CRISPR-Cas9 Off-Target Prediction.

作者信息

Zheng Yanyi, Zou Quan, Li Jian, Yang Yanpeng

机构信息

College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.

Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.

出版信息

Genes (Basel). 2025 Mar 28;16(4):387. doi: 10.3390/genes16040387.

Abstract

BACKGROUND

The CRISPR-Cas9 system has emerged as one of the most promising gene-editing technologies in biology. However, off-target effects remain a significant challenge. While recent advances in deep learning have led to the development of models for off-target prediction, these models often fail to fully leverage sequence pair information. Furthermore, as the models' parameter sizes increase, so do their complexities, limiting their practical applicability.

METHODS

In this study, we introduce a novel multi-feature independent encoding method, which encodes the gRNA-DNA sequence pair into three distinct feature matrices to minimize information loss. Additionally, we propose a lightweight hybrid deep learning framework, CRISPR-MFH, that integrates multi-scale separable convolutions and hybrid attention mechanisms for efficient and accurate off-target prediction.

RESULTS

Extensive experiments across multiple benchmark datasets demonstrate that the proposed encoding method effectively captures critical features and that CRISPR-MFH outperforms or matches state-of-the-art models with significantly fewer parameters across multiple evaluation metrics.

CONCLUSIONS

This study offers a novel perspective for advancing deep learning technology in the realm of CRISPR-Cas9 off-target detection.

摘要

背景

CRISPR-Cas9系统已成为生物学中最有前景的基因编辑技术之一。然而,脱靶效应仍然是一个重大挑战。虽然深度学习的最新进展已促成脱靶预测模型的开发,但这些模型往往无法充分利用序列对信息。此外,随着模型参数规模的增加,其复杂性也随之增加,限制了它们的实际适用性。

方法

在本研究中,我们引入了一种新颖的多特征独立编码方法,该方法将gRNA-DNA序列对编码为三个不同的特征矩阵,以最小化信息损失。此外,我们提出了一种轻量级混合深度学习框架CRISPR-MFH,该框架集成了多尺度可分离卷积和混合注意力机制,以实现高效且准确的脱靶预测。

结果

在多个基准数据集上进行的广泛实验表明,所提出的编码方法有效地捕获了关键特征,并且CRISPR-MFH在多个评估指标上以明显更少的参数优于或匹配了当前的先进模型。

结论

本研究为在CRISPR-Cas9脱靶检测领域推进深度学习技术提供了一个新颖的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e35/12026807/2533b4cbb693/genes-16-00387-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验