Suppr超能文献

CRISPR-DIPOFF:一种用于 CRISPR Cas-9 脱靶预测的可解释深度学习方法。

CRISPR-DIPOFF: an interpretable deep learning approach for CRISPR Cas-9 off-target prediction.

机构信息

Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh.

Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA.

出版信息

Brief Bioinform. 2024 Jan 22;25(2). doi: 10.1093/bib/bbad530.

Abstract

CRISPR Cas-9 is a groundbreaking genome-editing tool that harnesses bacterial defense systems to alter DNA sequences accurately. This innovative technology holds vast promise in multiple domains like biotechnology, agriculture and medicine. However, such power does not come without its own peril, and one such issue is the potential for unintended modifications (Off-Target), which highlights the need for accurate prediction and mitigation strategies. Though previous studies have demonstrated improvement in Off-Target prediction capability with the application of deep learning, they often struggle with the precision-recall trade-off, limiting their effectiveness and do not provide proper interpretation of the complex decision-making process of their models. To address these limitations, we have thoroughly explored deep learning networks, particularly the recurrent neural network based models, leveraging their established success in handling sequence data. Furthermore, we have employed genetic algorithm for hyperparameter tuning to optimize these models' performance. The results from our experiments demonstrate significant performance improvement compared with the current state-of-the-art in Off-Target prediction, highlighting the efficacy of our approach. Furthermore, leveraging the power of the integrated gradient method, we make an effort to interpret our models resulting in a detailed analysis and understanding of the underlying factors that contribute to Off-Target predictions, in particular the presence of two sub-regions in the seed region of single guide RNA which extends the established biological hypothesis of Off-Target effects. To the best of our knowledge, our model can be considered as the first model combining high efficacy, interpretability and a desirable balance between precision and recall.

摘要

CRISPR Cas-9 是一种开创性的基因组编辑工具,利用细菌防御系统准确地改变 DNA 序列。这项创新技术在生物技术、农业和医学等多个领域都有着广阔的应用前景。然而,这种力量并非没有自身的危险,其中一个问题是潜在的非预期修饰(脱靶),这凸显了对准确预测和缓解策略的需求。尽管之前的研究已经证明,深度学习的应用可以提高脱靶预测能力,但它们往往在精度-召回率权衡方面存在困难,限制了它们的有效性,并且无法对其模型的复杂决策过程提供适当的解释。为了解决这些限制,我们深入探索了深度学习网络,特别是基于循环神经网络的模型,利用它们在处理序列数据方面的成功经验。此外,我们还采用了遗传算法进行超参数调优,以优化这些模型的性能。与当前最先进的脱靶预测方法相比,我们的实验结果表明,我们的方法在性能上有了显著的提高,这突出了我们方法的有效性。此外,我们还利用集成梯度方法的力量,努力对我们的模型进行解释,从而对导致脱靶预测的潜在因素进行了详细的分析和理解,特别是在单指导 RNA 的种子区域存在两个亚区,这扩展了脱靶效应的现有生物学假设。据我们所知,我们的模型可以被认为是第一个结合了高效、可解释性以及在精度和召回率之间取得理想平衡的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7ef/10883906/6498a41278ca/bbad530f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验