Suppr超能文献

妇科病理学诊断中的人工智能概述

An Overview of Artificial Intelligence in Gynaecological Pathology Diagnostics.

作者信息

Joshua Anna, Allen Katie E, Orsi Nicolas M

机构信息

Christian Medical College, Vellore 632004, Tamil Nadu, India.

Women's Health Research Group, Leeds Institute of Cancer & Pathology, Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK.

出版信息

Cancers (Basel). 2025 Apr 16;17(8):1343. doi: 10.3390/cancers17081343.

Abstract

: The advent of artificial intelligence (AI) has revolutionised many fields in healthcare. More recently, it has garnered interest in terms of its potential applications in histopathology, where algorithms are increasingly being explored as adjunct technologies that can support pathologists in diagnosis, molecular typing and prognostication. While many research endeavours have focused on solid tumours, gynaecological malignancies have nevertheless been relatively overlooked. The aim of this review was therefore to provide a summary of the status quo in the field of AI in gynaecological pathology by encompassing malignancies throughout the entirety of the female reproductive tract rather than focusing on individual cancers. : This narrative/scoping review explores the potential application of AI in whole slide image analysis in gynaecological histopathology, drawing on both findings from the research setting (where such technologies largely remain confined), and highlights any findings and/or applications identified and developed in other cancers that could be translated to this arena. : A particular focus is given to ovarian, endometrial, cervical and vulval/vaginal tumours. This review discusses different algorithms, their performance and potential applications. : The effective application of AI tools is only possible through multidisciplinary co-operation and training.

摘要

人工智能(AI)的出现彻底改变了医疗保健领域的许多方面。最近,它在组织病理学中的潜在应用引发了人们的兴趣,在组织病理学中,算法越来越多地被探索为辅助技术,可在诊断、分子分型和预后方面为病理学家提供支持。虽然许多研究工作都集中在实体瘤上,但妇科恶性肿瘤相对而言却被忽视了。因此,本综述的目的是通过涵盖整个女性生殖道的恶性肿瘤,而不是专注于个别癌症,来总结妇科病理学中人工智能领域的现状。:本叙述性/范围界定性综述探讨了人工智能在妇科组织病理学全切片图像分析中的潜在应用,借鉴了研究环境中的研究结果(此类技术在很大程度上仍局限于此),并强调了在其他癌症中确定和开发的、可转化到这一领域的任何发现和/或应用。:特别关注卵巢癌、子宫内膜癌、宫颈癌和外阴/阴道肿瘤。本综述讨论了不同的算法、它们的性能和潜在应用。:只有通过多学科合作和培训,才能有效地应用人工智能工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e1c/12025868/c5d1d045cd17/cancers-17-01343-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验