Suppr超能文献

深度学习在子宫内膜癌分级中的应用。

Deep Learning for Grading Endometrial Cancer.

机构信息

Department of Biomedical Data Science, Dartmouth College, Hanover, New Hampshire.

Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire.

出版信息

Am J Pathol. 2024 Sep;194(9):1701-1711. doi: 10.1016/j.ajpath.2024.05.003. Epub 2024 Jun 13.

Abstract

Endometrial cancer is the fourth most common cancer in women in the United States, with a lifetime risk of approximately 2.8%. Precise histologic evaluation and molecular classification of endometrial cancer are important for effective patient management and determining the best treatment options. This study introduces EndoNet, which uses convolutional neural networks for extracting histologic features and a vision transformer for aggregating these features and classifying slides into high- and low-grade cases. The model was trained on 929 digitized hematoxylin and eosin-stained whole-slide images of endometrial cancer from hysterectomy cases at Dartmouth-Health. It classifies these slides into low-grade (endometrioid grades 1 and 2) and high-grade (endometrioid carcinoma International Federation of Gynecology and Obstetrics grade 3, uterine serous carcinoma, or carcinosarcoma) categories. EndoNet was evaluated on an internal test set of 110 patients and an external test set of 100 patients from The Cancer Genome Atlas database. The model achieved a weighted average F1 score of 0.91 (95% CI, 0.86 to 0.95) and an area under the curve of 0.95 (95% CI, 0.89 to 0.99) on the internal test, and 0.86 (95% CI, 0.80 to 0.94) for F1 score and 0.86 (95% CI, 0.75 to 0.93) for area under the curve on the external test. Pending further validation, EndoNet has the potential to support pathologists without the need of manual annotations in classifying the grades of gynecologic pathology tumors.

摘要

子宫内膜癌是美国女性第四常见的癌症,终生风险约为 2.8%。准确的组织学评估和分子分类对有效管理患者和确定最佳治疗方案至关重要。本研究介绍了 EndoNet,它使用卷积神经网络提取组织学特征,并使用视觉转换器聚合这些特征并将幻灯片分类为高低级别病例。该模型在达特茅斯健康中心的子宫切除术病例中,使用 929 张数字化苏木精和伊红染色的子宫内膜癌全幻灯片图像进行训练。它将这些幻灯片分为低级别(子宫内膜样癌 1 级和 2 级)和高级别(子宫内膜癌国际妇产科联合会 3 级、子宫浆液性癌或癌肉瘤)类别。EndoNet 在 110 名内部测试患者和来自癌症基因组图谱数据库的 100 名外部测试患者的内部测试集上进行了评估。该模型在内部测试中的加权平均 F1 得分为 0.91(95%CI,0.86 至 0.95),曲线下面积为 0.95(95%CI,0.89 至 0.99),在外部测试中的 F1 得分为 0.86(95%CI,0.80 至 0.94),曲线下面积为 0.86(95%CI,0.75 至 0.93)。在进一步验证之前,EndoNet 有可能支持病理学家在分类妇科肿瘤病理肿瘤的级别时无需手动注释。

相似文献

1
Deep Learning for Grading Endometrial Cancer.深度学习在子宫内膜癌分级中的应用。
Am J Pathol. 2024 Sep;194(9):1701-1711. doi: 10.1016/j.ajpath.2024.05.003. Epub 2024 Jun 13.

本文引用的文献

1
Masked pre-training of transformers for histology image analysis.用于组织学图像分析的Transformer掩码预训练
J Pathol Inform. 2024 May 31;15:100386. doi: 10.1016/j.jpi.2024.100386. eCollection 2024 Dec.
2
FIGO staging of endometrial cancer: 2023.国际妇产科联盟(FIGO)子宫内膜癌分期:2023 年。
Int J Gynaecol Obstet. 2023 Aug;162(2):383-394. doi: 10.1002/ijgo.14923. Epub 2023 Jun 20.
5
Cancer statistics, 2023.癌症统计数据,2023 年。
CA Cancer J Clin. 2023 Jan;73(1):17-48. doi: 10.3322/caac.21763.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验