Suppr超能文献

用于人工智能辅助声门病变鉴别诊断的高速视频内镜检查与硬度映射

High-Speed Videoendoscopy and Stiffness Mapping for AI-Assisted Glottic Lesion Differentiation.

作者信息

Pietrzak Magdalena M, Kałuża-Olszewska Justyna, Niebudek-Bogusz Ewa, Klepaczko Artur, Pietruszewska Wioletta

机构信息

Department of Otolaryngology, Head and Neck Oncology, Medical University of Lodz, 90-419 Lodz, Poland.

Institute of Electronics, Lodz University of Technology, 90-924 Lodz, Poland.

出版信息

Cancers (Basel). 2025 Apr 21;17(8):1376. doi: 10.3390/cancers17081376.

Abstract

: This study evaluates the potential of high-speed videoendoscopy (HSV) in differentiating between benign and malignant glottic lesions, offering a non-invasive diagnostic tool for clinicians. Moreover, a new parameter derived from high-speed videoendoscopy (HSV) had been proposed and implemented in the analysis for an objective assessment of the vocal fold stiffness. : High-speed videoendoscopy (HSV) was conducted on 102 participants, including 21 normophonic individuals, 39 patients with benign vocal fold lesions, and 42 with glottic cancer. Laryngotopographic parameter describing the stiffness of vocal fold (SAI) and kymographic parameters describing amplitude, symmetry, and glottal dynamics were quantified. Statistical differences between groups were assessed using receiver operating characteristic (ROC) analysis and lesion classification was performed using a machine learning model. : Univariate receiver operating characteristic (ROC) analysis revealed that SAI (AUC = 0.91, 95% CI: 0.839-0.962) and weighted amplitude asymmetry (AUC = 0.92, 95% CI: 0.85-0.974) were highly effective in distinguishing between normophonic and organic lesions ( < 0.01). Further multivariate analysis using machine learning models demonstrated improved accuracy, with the SVM classifier achieving an AUC of 0.93 for detecting organic lesions and 0.83 for distinguishing benign from malignant lesions. : The study demonstrates the potential value of parameter describing the pliability of infiltrated vocal fold (SAI) as a non-invasive tool to support histopathological evaluation in laryngeal lesions, with machine learning models enhancing diagnostic performance.

摘要

本研究评估了高速视频内镜检查(HSV)在鉴别声门良性和恶性病变方面的潜力,为临床医生提供了一种非侵入性诊断工具。此外,还提出并实施了一种源自高速视频内镜检查(HSV)的新参数,用于分析中对声带僵硬度进行客观评估。

对102名参与者进行了高速视频内镜检查(HSV),其中包括21名发声正常者、39名声带良性病变患者和42名声门癌患者。对描述声带僵硬度的喉局部解剖参数(SAI)以及描述振幅、对称性和声门动力学的记波参数进行了量化。使用受试者操作特征(ROC)分析评估组间的统计学差异,并使用机器学习模型进行病变分类。

单变量受试者操作特征(ROC)分析显示,SAI(AUC = 0.91,95%CI:0.839 - 0.962)和加权振幅不对称性(AUC = 0.92,95%CI:0.85 - 0.974)在区分发声正常者和器质性病变方面非常有效(<0.01)。使用机器学习模型进行的进一步多变量分析显示准确性有所提高,支持向量机(SVM)分类器检测器质性病变的AUC为0.93,区分良性和恶性病变的AUC为0.83。

该研究证明了描述浸润性声带柔韧性的参数(SAI)作为支持喉部病变组织病理学评估的非侵入性工具的潜在价值,机器学习模型提高了诊断性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验