Suppr超能文献

运用多重分形时间序列分析技术探索词邻接网络

Exploring Word-Adjacency Networks with Multifractal Time Series Analysis Techniques.

作者信息

Dec Jakub, Dolina Michał, Drożdż Stanisław, Kluszczyński Robert, Kwapień Jarosław, Stanisz Tomasz

机构信息

Faculty of Computer Science and Telecommunications, Cracow University of Technology, 31-155 Kraków, Poland.

Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland.

出版信息

Entropy (Basel). 2025 Mar 28;27(4):356. doi: 10.3390/e27040356.

Abstract

A novel method of exploring linguistic networks is introduced by mapping word-adjacency networks to time series and applying multifractal analysis techniques. This approach captures the complex structural patterns of language by encoding network properties-such as clustering coefficients and node degrees-into temporal sequences. Using Alice's Adventures in Wonderland by Lewis Carroll as a case study, both traditional word-adjacency networks and extended versions that incorporate punctuation are examined. The results indicate that the time series derived from clustering coefficients, when following the natural reading order, exhibits multifractal characteristics, revealing inherent complexity in textual organization. Statistical validation confirms that observed multifractal properties arise from genuine correlations rather than from spurious effects. Extending this analysis by taking into account punctuation equally with words, however, changes the nature of the global scaling to a more convolved form that is not describable by a uniform multifractal. An analogous analysis based on the node degrees does not show such rich behaviors, however. These findings reveal a new perspective for quantitative linguistics and network science, providing a deeper understanding of the interplay between text structure and complex systems.

摘要

通过将词邻接网络映射到时间序列并应用多重分形分析技术,引入了一种探索语言网络的新方法。这种方法通过将网络属性(如聚类系数和节点度)编码到时间序列中来捕捉语言的复杂结构模式。以刘易斯·卡罗尔的《爱丽丝梦游仙境》为例,研究了传统的词邻接网络以及包含标点符号的扩展版本。结果表明,从聚类系数导出的时间序列在遵循自然阅读顺序时呈现出多重分形特征,揭示了文本组织中固有的复杂性。统计验证证实,观察到的多重分形特性源于真实的相关性而非虚假效应。然而,通过将标点符号与单词同等考虑来扩展此分析,会将全局标度的性质改变为一种更复杂的形式,这种形式无法用统一的多重分形来描述。然而,基于节点度的类似分析并未显示出如此丰富的行为。这些发现为定量语言学和网络科学揭示了一个新的视角,提供了对文本结构与复杂系统之间相互作用的更深入理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf0/12025806/8d27d3287d06/entropy-27-00356-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验