Huang Zijia, Xu Qiushi, Sun Menghao, Zhu Xuzhen, Fan Shaoshuai
National Key Laboratory of Multi-Domain Data Collaborative Processing and Control, Xi'an 710068, China.
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China.
Entropy (Basel). 2025 Apr 3;27(4):380. doi: 10.3390/e27040380.
Aiming at the problem of reduced positioning accuracy of unmanned swarm navigation systems due to dynamic abrupt noise in a complex electromagnetic environment, this paper proposes an adaptive Kalman filtering positioning and calibration method based on dynamic mutation perception and collaborative correction. This method optimizes the performance of Kalman filtering by monitoring the mutation of acceleration and velocity in real time, designing a dynamic threshold detection mechanism, adaptively adjusting the covariance matrix, and using multidimensional scaling analysis to calculate the similarity of trajectories and collaboratively correct the current state. The experiment uses simulation and real scene data and compares algorithms such as the traditional extended Kalman filter to verify the effectiveness of the proposed method, providing an effective solution for the collaborative positioning of an unmanned swarm under complex electromagnetic interference.
针对复杂电磁环境下动态突发噪声导致无人集群导航系统定位精度降低的问题,提出一种基于动态突变感知与协同校正的自适应卡尔曼滤波定位与校准方法。该方法通过实时监测加速度和速度的突变、设计动态阈值检测机制、自适应调整协方差矩阵,并利用多维缩放分析计算轨迹相似度对当前状态进行协同校正,优化卡尔曼滤波性能。实验采用仿真和真实场景数据,并与传统扩展卡尔曼滤波器等算法进行比较,验证了所提方法的有效性,为复杂电磁干扰下无人集群的协同定位提供了有效解决方案。