Département de physique, de génie physique et d'optique, Université Laval, Québec, Québec, Canada.
Centre interdisciplinaire en modélisation mathématique, Université Laval, Québec, Québec, Canada.
Nat Commun. 2021 Aug 5;12(1):4720. doi: 10.1038/s41467-021-24732-2.
Forecasting the evolution of contagion dynamics is still an open problem to which mechanistic models only offer a partial answer. To remain mathematically or computationally tractable, these models must rely on simplifying assumptions, thereby limiting the quantitative accuracy of their predictions and the complexity of the dynamics they can model. Here, we propose a complementary approach based on deep learning where effective local mechanisms governing a dynamic on a network are learned from time series data. Our graph neural network architecture makes very few assumptions about the dynamics, and we demonstrate its accuracy using different contagion dynamics of increasing complexity. By allowing simulations on arbitrary network structures, our approach makes it possible to explore the properties of the learned dynamics beyond the training data. Finally, we illustrate the applicability of our approach using real data of the COVID-19 outbreak in Spain. Our results demonstrate how deep learning offers a new and complementary perspective to build effective models of contagion dynamics on networks.
预测传染病动力学的演变仍然是一个悬而未决的问题,机械模型只能提供部分答案。为了保持数学或计算上的可处理性,这些模型必须依赖于简化假设,从而限制了它们预测的定量准确性和它们可以建模的动态的复杂性。在这里,我们提出了一种基于深度学习的补充方法,其中从时间序列数据中学习控制网络上动态的有效局部机制。我们的图神经网络架构对动态的假设很少,我们使用不同的、越来越复杂的传染病动力学来证明其准确性。通过允许在任意网络结构上进行模拟,我们的方法使得可以在训练数据之外探索所学习动态的特性。最后,我们使用西班牙 COVID-19 爆发的真实数据说明了我们方法的适用性。我们的结果表明,深度学习如何为在网络上建立传染病动力学的有效模型提供了一个新的、互补的视角。