Gupta Rishabh, Gupta Shivam, Singh Jaskirat, Kais Sabre
Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
EntropyX Labs Pvt. Ltd., Ghaziabad 201010, Uttar Pradesh, India.
Entropy (Basel). 2025 Apr 16;27(4):430. doi: 10.3390/e27040430.
Short-term patterns in financial time series form the cornerstone of many algorithmic trading strategies, yet extracting these patterns reliably from noisy market data remains a formidable challenge. In this paper, we propose an entropy-assisted framework for identifying high-quality, non-overlapping patterns that exhibit consistent behavior over time. We ground our approach in the premise that historical patterns, when accurately clustered and pruned, can yield substantial predictive power for short-term price movements. To achieve this, we incorporate an entropy-based measure as a proxy for information gain: patterns that lead to high one-sided movements in historical data yet retain low local entropy are more "informative" in signaling future market direction. Compared to conventional clustering techniques such as K-means and Gaussian Mixture Models (GMMs), which often yield biased or unbalanced groupings, our approach emphasizes balance over a forced visual boundary, ensuring that quality patterns are not lost due to over-segmentation. By emphasizing both predictive purity (low local entropy) and historical profitability, our method achieves a balanced representation of Buy and Sell patterns, making it better suited for short-term algorithmic trading strategies. This paper offers an in-depth illustration of our entropy-assisted framework through two case studies on Gold vs. USD and GBPUSD. While these examples demonstrate the method's potential for extracting high-quality patterns, they do not constitute an exhaustive survey of all possible asset classes.
金融时间序列中的短期模式构成了许多算法交易策略的基石,但从嘈杂的市场数据中可靠地提取这些模式仍然是一项艰巨的挑战。在本文中,我们提出了一个熵辅助框架,用于识别高质量、不重叠且随时间表现出一致行为的模式。我们的方法基于这样一个前提:历史模式经过准确聚类和筛选后,能够为短期价格走势产生强大的预测能力。为了实现这一点,我们引入一种基于熵的度量作为信息增益的代理:在历史数据中导致大幅单边走势但局部熵较低的模式,在预示未来市场方向方面更具“信息性”。与传统聚类技术(如K均值和高斯混合模型(GMM))相比,这些技术往往会产生有偏差或不平衡的分组,我们的方法强调平衡而非强制的视觉边界,确保不会因过度分割而丢失高质量模式。通过强调预测纯度(低局部熵)和历史盈利能力,我们的方法实现了买卖模式的平衡表示,使其更适合短期算法交易策略。本文通过对黄金与美元以及英镑兑美元的两个案例研究,深入阐述了我们的熵辅助框架。虽然这些例子展示了该方法提取高质量模式的潜力,但它们并不构成对所有可能资产类别的详尽调查。