Suppr超能文献

肾上腺肿块特征的放射组学结果在不同软件下是稳定且可重复的。

Radiomics Results for Adrenal Mass Characterization Are Stable and Reproducible Under Different Software.

作者信息

Feliciani Giacomo, Mascolo Francesca, Cossu Alberto, Urso Luca, Feletti Francesco, Menghi Enrico, Sarnelli Anna, Ambrosio Maria Rosaria, Giganti Melchiore, Carnevale Aldo

机构信息

Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy.

Department of Translational Medicine-Section of Radiology, University of Ferrara, 44121 Ferrara, Italy.

出版信息

Life (Basel). 2025 Mar 31;15(4):560. doi: 10.3390/life15040560.

Abstract

: This study aims to investigate stability and reproducibility of radiomics biomarkers for adrenal lesion characterization across different software packages. : Unenhanced CT images from patients with adrenal tumors were analyzed. Radiomic features were extracted using SOPHIA Radiomics and SIBEX software. The datasets underwent Z-score normalization. Statistical comparisons were made using two-sample -tests and Spearman correlation coefficients. Three classification models-Logistic Regression, Linear Discriminant Analysis, and Linear Support Vector Machine-were trained on the datasets. Model performance was evaluated using accuracy, precision, recall, F1 score, and ROC curves. Feature importance and the statistical significance of model performance differences were also analyzed. : The -test results showed no significant differences in the radiomic features extracted by SOPHIA and SIBEX (-values all equal to 1.0). Spearman correlation coefficients were high for most features, suggesting a strong similarity between the two software tools. Classification models generally performed better on the SOPHIA dataset, with higher accuracy and precision. Feature importance analysis identified "Quadratic mean" and "Strength" as consistently influential features. Paired -tests indicated significant differences in accuracy and precision, while Wilcoxon signed-rank tests did not find significant differences across all performance metrics. : Radiomic features extracted by SOPHIA and SIBEX are comparable, but slight variations in model performance highlight the need for standardized extraction protocols and fine-tuning of predictive features. The study underscores the importance of ensuring the stability and reproducibility of radiomics features for reliable clinical application in adrenal lesion characterization.

摘要

本研究旨在调查不同软件包中用于肾上腺病变特征描述的放射组学生物标志物的稳定性和可重复性。对肾上腺肿瘤患者的平扫CT图像进行分析。使用SOPHIA放射组学软件和SIBEX软件提取放射组学特征。数据集进行Z分数标准化。使用双样本t检验和Spearman相关系数进行统计比较。在数据集上训练了三种分类模型——逻辑回归、线性判别分析和线性支持向量机。使用准确率、精确率、召回率、F1分数和ROC曲线评估模型性能。还分析了特征重要性和模型性能差异的统计显著性。t检验结果显示,SOPHIA和SIBEX提取的放射组学特征无显著差异(p值均等于1.0)。大多数特征的Spearman相关系数较高,表明这两种软件工具之间有很强的相似性。分类模型在SOPHIA数据集上的表现通常更好,准确率和精确率更高。特征重要性分析确定“二次均值”和“强度”为始终有影响的特征。配对t检验表明准确率和精确率存在显著差异,而Wilcoxon符号秩检验在所有性能指标上未发现显著差异。SOPHIA和SIBEX提取的放射组学特征具有可比性,但模型性能的细微差异凸显了标准化提取协议和预测特征微调的必要性。该研究强调了确保放射组学特征的稳定性和可重复性对于肾上腺病变特征描述可靠临床应用的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/734d/12028440/96346a930a92/life-15-00560-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验