Suppr超能文献

红细胞沉降率要点:欧洲医学影像信息学会的放射组学实践建议

ESR Essentials: radiomics-practice recommendations by the European Society of Medical Imaging Informatics.

作者信息

Santinha João, Pinto Dos Santos Daniel, Laqua Fabian, Visser Jacob J, Groot Lipman Kevin B W, Dietzel Matthias, Klontzas Michail E, Cuocolo Renato, Gitto Salvatore, Akinci D'Antonoli Tugba

机构信息

Digital Surgery LAB, Champalimaud Research, Champalimaud Foundation, Av. Brasília, 1400-038, Lisbon, Portugal.

Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.

出版信息

Eur Radiol. 2025 Mar;35(3):1122-1132. doi: 10.1007/s00330-024-11093-9. Epub 2024 Oct 25.

Abstract

Radiomics is a method to extract detailed information from diagnostic images that cannot be perceived by the naked eye. Although radiomics research carries great potential to improve clinical decision-making, its inherent methodological complexities make it difficult to comprehend every step of the analysis, often causing reproducibility and generalizability issues that hinder clinical adoption. Critical steps in the radiomics analysis and model development pipeline-such as image, application of image filters, and selection of feature extraction parameters-can greatly affect the values of radiomic features. Moreover, common errors in data partitioning, model comparison, fine-tuning, assessment, and calibration can reduce reproducibility and impede clinical translation. Clinical adoption of radiomics also requires a deep understanding of model explainability and the development of intuitive interpretations of radiomic features. To address these challenges, it is essential for radiomics model developers and clinicians to be well-versed in current best practices. Proper knowledge and application of these practices is crucial for accurate radiomics feature extraction, robust model development, and thorough assessment, ultimately increasing reproducibility, generalizability, and the likelihood of successful clinical translation. In this article, we have provided researchers with our recommendations along with practical examples to facilitate good research practices in radiomics. KEY POINTS: Radiomics' inherent methodological complexity should be understood to ensure rigorous radiomic model development to improve clinical decision-making. Adherence to radiomics-specific checklists and quality assessment tools ensures methodological rigor. Use of standardized radiomics tools and best practices enhances clinical translation of radiomics models.

摘要

放射组学是一种从肉眼无法察觉的诊断图像中提取详细信息的方法。尽管放射组学研究在改善临床决策方面具有巨大潜力,但其固有的方法复杂性使得难以理解分析的每一步,常常导致阻碍临床应用的可重复性和普遍性问题。放射组学分析和模型开发流程中的关键步骤,如图像、图像滤波器的应用以及特征提取参数的选择,会极大地影响放射组学特征的值。此外,数据划分、模型比较、微调、评估和校准中的常见错误会降低可重复性并阻碍临床转化。放射组学的临床应用还需要深入理解模型的可解释性以及对放射组学特征进行直观解读。为应对这些挑战,放射组学模型开发者和临床医生精通当前最佳实践至关重要。正确掌握和应用这些实践对于准确的放射组学特征提取、稳健的模型开发和全面评估至关重要,最终可提高可重复性、普遍性以及成功临床转化的可能性。在本文中,我们为研究人员提供了建议及实际示例,以促进放射组学的良好研究实践。要点:应理解放射组学固有的方法复杂性,以确保严格的放射组学模型开发,从而改善临床决策。遵循放射组学特定的清单和质量评估工具可确保方法的严谨性。使用标准化的放射组学工具和最佳实践可增强放射组学模型的临床转化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77d2/11835989/1ac15e7d7ec7/330_2024_11093_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验