文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Sustainable Manufacturing of Lightweight Hybrid Nanocomposites for Electric Vehicle Battery Enclosures.

作者信息

Farooq Umar, Bertana Valentina, Mossotti Giulia, Ferrero Sergio, Scaltrito Luciano

机构信息

Chilab-ITEM Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.

Department of Science and Technology Innovation (DISIT), Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy.

出版信息

Polymers (Basel). 2025 Apr 14;17(8):1056. doi: 10.3390/polym17081056.


DOI:10.3390/polym17081056
PMID:40284321
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12030669/
Abstract

Nanocomposite laminates containing carbon fibers, epoxy, and multiwalled carbon nanotubes were fabricated using a vacuum bag process. Ecofriendly ionic liquid (5 wt%)-treated multiwalled carbon nanotubes (pristine and nickel-coated) were added to the epoxy independently, in amounts ranging from 1 wt% to 3 wt%, in order to tailor the mechanical, electrical, and thermal performance of manufactured carbon fiber epoxy composite laminates. These nanocomposite laminates were later characterized through flexural testing, dynamic mechanical analysis, impedance spectroscopy, thermal conductivity tests, and FTIR spectroscopy to evaluate their suitability for battery pack applications. The findings showed that both types of multiwalled carbon nanotubes exhibited multifaceted effects on the properties of bulk hybrid carbon fiber epoxy nanocomposite laminates. For instance, the flexural strength of the composites containing 3.0 wt% of ionic liquid-treated pristine multiwalled carbon nanotubes reached 802.8 MPa, the flexural modulus was 88.21 GPa, and the storage modulus was 18.2 GPa, while the loss modulus peaked at 1.76 GPa. The thermal conductivity of the composites ranged from 0.38869 W/(m · K) to 0.69772 W/(m · K), and the electrical resistance decreased significantly with the addition of MWCNTs, reaching a minimum of 29.89 Ω for CFRPIP-1.5 wt%. The structural performance of hybrid nanocomposites containing ionic liquid-treated pristine multiwalled carbon nanotubes was higher than that of the hybrid nanocomposite of ionic liquid-treated Ni-coated multiwalled carbon nanotubes, although the latter was found to possess better functional performance.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/06ce225cf5f7/polymers-17-01056-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/12c9dfa6997c/polymers-17-01056-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/ce6a9dfb8901/polymers-17-01056-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/961ec4b91b92/polymers-17-01056-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/9fceb9cce32d/polymers-17-01056-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/d02bb352bc36/polymers-17-01056-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/9fdf7cd3faf0/polymers-17-01056-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/7e15b294a4ce/polymers-17-01056-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/778e8b0b14d5/polymers-17-01056-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/06ce225cf5f7/polymers-17-01056-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/12c9dfa6997c/polymers-17-01056-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/ce6a9dfb8901/polymers-17-01056-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/961ec4b91b92/polymers-17-01056-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/9fceb9cce32d/polymers-17-01056-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/d02bb352bc36/polymers-17-01056-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/9fdf7cd3faf0/polymers-17-01056-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/7e15b294a4ce/polymers-17-01056-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/778e8b0b14d5/polymers-17-01056-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/12030669/06ce225cf5f7/polymers-17-01056-g009.jpg

相似文献

[1]
Sustainable Manufacturing of Lightweight Hybrid Nanocomposites for Electric Vehicle Battery Enclosures.

Polymers (Basel). 2025-4-14

[2]
Interfacial Architecture Constructed Using Functionalized MWNT Resulting in Enhanced EMI Shielding in Epoxy/Carbon Fiber Composites.

ACS Omega. 2018-4-10

[3]
Incorporation of liquid-like multiwalled carbon nanotubes into an epoxy matrix by solvent-free processing.

Nanotechnology. 2012-6-8

[4]
Mechanical and Electrical Properties of Epoxy Composites Modified by Functionalized Multiwalled Carbon Nanotubes.

Materials (Basel). 2021-6-16

[5]
Carbon Nanotube/Cu Nanowires/Epoxy Composite Mats with Improved Thermal and Electrical Conductivity.

J Nanosci Nanotechnol. 2015-4

[6]
Dynamic mechanical analysis of carbon nanotube-reinforced nanocomposites.

J Appl Biomater Funct Mater. 2017-6-16

[7]
Wet-Spinning Assembly of Continuous, Highly Stable Hyaluronic/Multiwalled Carbon Nanotube Hybrid Microfibers.

Polymers (Basel). 2019-5-13

[8]
Facile Fabrication of Environmentally-Friendly Hydroxyl-Functionalized Multiwalled Carbon Nanotubes/Soy Oil-Based Polyurethane Nanocomposite Bioplastics with Enhanced Mechanical, Thermal, and Electrical Conductivity Properties.

Polymers (Basel). 2019-5-1

[9]
Synergistic Enhanced Thermal Conductivity and Crack Resistance of Reactor Epoxy Insulation with Boron Nitride Nanosheets and Multiwalled Carbon Nanotubes.

Nanomaterials (Basel). 2022-9-18

[10]
Mechanical Properties and Characterization of Epoxy Composites Containing Highly Entangled As-Received and Acid Treated Carbon Nanotubes.

Nanomaterials (Basel). 2021-9-19

本文引用的文献

[1]
A Comprehensive Review on Cellulose Nanofibers, Nanomaterials, and Composites: Manufacturing, Properties, and Applications.

Nanomaterials (Basel). 2025-2-25

[2]
High-Performance Advanced Composites in Multifunctional Material Design: State of the Art, Challenges, and Future Directions.

Materials (Basel). 2024-12-7

[3]
Thermo-Mechanical and Thermo-Electric Properties of a Carbon-Based Epoxy Resin: An Experimental, Statistical, and Numerical Investigation.

Materials (Basel). 2024-7-21

[4]
Unexpected Energy Applications of Ionic Liquids.

Adv Mater. 2024-6

[5]
Ionic Liquids as Designed, Multi-Functional Plasticizers for Biodegradable Polymeric Materials: A Mini-Review.

Int J Mol Sci. 2024-1-31

[6]
Multifunctional Applications of Ionic Liquids in Polymer Materials: A Brief Review.

Molecules. 2023-4-30

[7]
High Performance Carbon Fiber Structural Batteries Using Cellulose Nanocrystal Reinforced Polymer Electrolyte.

ACS Appl Mater Interfaces. 2022-10-12

[8]
Ionic Liquid-Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future.

Adv Sci (Weinh). 2022-9

[9]
Cotton-Derived Fe/FeC-Encapsulated Carbon Nanotubes for High-Performance Lithium-Sulfur Batteries.

Nano Lett. 2022-2-9

[10]
Integrated intelligent computing application for effectiveness of Au nanoparticles coated over MWCNTs with velocity slip in curved channel peristaltic flow.

Sci Rep. 2021-11-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索