文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

离子液体基聚合物纳米复合材料在传感器、能源、生物医学和环境应用中的应用:未来之路。

Ionic Liquid-Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future.

机构信息

Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.

Mechanics and Energy Laboratory, Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.

出版信息

Adv Sci (Weinh). 2022 Sep;9(26):e2202187. doi: 10.1002/advs.202202187. Epub 2022 Jul 19.


DOI:10.1002/advs.202202187
PMID:35853696
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9475560/
Abstract

Current interest toward ionic liquids (ILs) stems from some of their novel characteristics, like low vapor pressure, thermal stability, and nonflammability, integrated through high ionic conductivity and broad range of electrochemical strength. Nowadays, ionic liquids represent a new category of chemical-based compounds for developing superior and multifunctional substances with potential in several fields. ILs can be used in solvents such as salt electrolyte and additional materials. By adding functional physiochemical characteristics, a variety of IL-based electrolytes can also be used for energy storage purposes. It is hoped that the present review will supply guidance for future research focused on IL-based polymer nanocomposites electrolytes for sensors, high performance, biomedicine, and environmental applications. Additionally, a comprehensive overview about the polymer-based composites' ILs components, including a classification of the types of polymer matrix available is provided in this review. More focus is placed upon ILs-based polymeric nanocomposites used in multiple applications such as electrochemical biosensors, energy-related materials, biomedicine, actuators, environmental, and the aviation and aerospace industries. At last, existing challenges and prospects in this field are discussed and concluding remarks are provided.

摘要

目前,人们对离子液体(ILs)的兴趣源于其一些新颖的特性,例如低蒸气压、热稳定性和非可燃性,这些特性通过高离子导电性和广泛的电化学强度来实现。如今,离子液体代表了一类新型的基于化学的化合物,用于开发具有多种潜在用途的卓越多功能物质。离子液体可用作盐电解质和其他材料的溶剂。通过添加功能物理化学特性,还可以将各种基于 IL 的电解质用于储能目的。希望本综述将为未来基于 IL 的聚合物纳米复合材料电解质在传感器、高性能、生物医学和环境应用方面的研究提供指导。此外,本综述还提供了关于基于聚合物的复合材料 IL 成分的全面概述,包括可用聚合物基体的分类。本综述更侧重于用于多种应用的基于 IL 的聚合物纳米复合材料,例如电化学生物传感器、与能源相关的材料、生物医学、致动器、环境以及航空航天工业。最后,讨论了该领域目前存在的挑战和展望,并给出了结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/b29abc077acb/ADVS-9-2202187-g039.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/bce72ccdb409/ADVS-9-2202187-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/cd04667ad846/ADVS-9-2202187-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/106818011661/ADVS-9-2202187-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/35003d9f886c/ADVS-9-2202187-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/e24f7b3c1bc7/ADVS-9-2202187-g032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/2315b833482b/ADVS-9-2202187-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/5af6d4525cdf/ADVS-9-2202187-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/ef2e6b927361/ADVS-9-2202187-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/5724a5a64a53/ADVS-9-2202187-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/455e92d4ee2d/ADVS-9-2202187-g033.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/98f49c55df0f/ADVS-9-2202187-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/e459ba6634c8/ADVS-9-2202187-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/310584b7d83f/ADVS-9-2202187-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/20570c21575c/ADVS-9-2202187-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/98736f3bfbec/ADVS-9-2202187-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/2c3129500ee6/ADVS-9-2202187-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/bde864b3b5a4/ADVS-9-2202187-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/9d5b5cf268f1/ADVS-9-2202187-g038.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/6edae523d1f6/ADVS-9-2202187-g035.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/df88d7578dbd/ADVS-9-2202187-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/f7c97af467ae/ADVS-9-2202187-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/6ecea8ca6f04/ADVS-9-2202187-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/10de23b05505/ADVS-9-2202187-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/9dce394ce02f/ADVS-9-2202187-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/e5f7e7d78421/ADVS-9-2202187-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/822743c24eb1/ADVS-9-2202187-g034.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/32e4ef092f1e/ADVS-9-2202187-g040.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/0d97c5535903/ADVS-9-2202187-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/453750cdad4e/ADVS-9-2202187-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/f8cd7512f100/ADVS-9-2202187-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/18fdc86f71b1/ADVS-9-2202187-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/b29abc077acb/ADVS-9-2202187-g039.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/bce72ccdb409/ADVS-9-2202187-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/cd04667ad846/ADVS-9-2202187-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/106818011661/ADVS-9-2202187-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/35003d9f886c/ADVS-9-2202187-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/e24f7b3c1bc7/ADVS-9-2202187-g032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/2315b833482b/ADVS-9-2202187-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/5af6d4525cdf/ADVS-9-2202187-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/ef2e6b927361/ADVS-9-2202187-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/5724a5a64a53/ADVS-9-2202187-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/455e92d4ee2d/ADVS-9-2202187-g033.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/98f49c55df0f/ADVS-9-2202187-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/e459ba6634c8/ADVS-9-2202187-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/310584b7d83f/ADVS-9-2202187-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/20570c21575c/ADVS-9-2202187-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/98736f3bfbec/ADVS-9-2202187-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/2c3129500ee6/ADVS-9-2202187-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/bde864b3b5a4/ADVS-9-2202187-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/9d5b5cf268f1/ADVS-9-2202187-g038.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/6edae523d1f6/ADVS-9-2202187-g035.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/df88d7578dbd/ADVS-9-2202187-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/f7c97af467ae/ADVS-9-2202187-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/6ecea8ca6f04/ADVS-9-2202187-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/10de23b05505/ADVS-9-2202187-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/9dce394ce02f/ADVS-9-2202187-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/e5f7e7d78421/ADVS-9-2202187-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/822743c24eb1/ADVS-9-2202187-g034.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/32e4ef092f1e/ADVS-9-2202187-g040.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/0d97c5535903/ADVS-9-2202187-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/453750cdad4e/ADVS-9-2202187-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/f8cd7512f100/ADVS-9-2202187-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/18fdc86f71b1/ADVS-9-2202187-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/9475560/b29abc077acb/ADVS-9-2202187-g039.jpg

相似文献

[1]
Ionic Liquid-Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future.

Adv Sci (Weinh). 2022-9

[2]
Ionic liquids as green solvents and electrolytes for robust chemical sensor development.

Acc Chem Res. 2012-8-15

[3]
Ionic liquids: environmentally sustainable materials for energy conversion and storage applications.

Environ Sci Pollut Res Int. 2024-2

[4]
A Review on Ionic Liquids-Based Membranes for Middle and High Temperature Polymer Electrolyte Membrane Fuel Cells (PEM FCs).

Int J Mol Sci. 2021-5-21

[5]
Renewable Biopolymers Combined with Ionic Liquids for the Next Generation of Supercapacitor Materials.

Int J Mol Sci. 2023-4-26

[6]
New types of Brönsted acid-base ionic liquids-based membranes for applications in PEMFCs.

Chemphyschem. 2007-5-14

[7]
Computer Simulations of Ion Transport in Polymer Electrolyte Membranes.

Annu Rev Chem Biomol Eng. 2016-6-7

[8]
Ionic Liquid-Based Gels for Applications in Electrochemical Energy Storage and Conversion Devices: A Review of Recent Progress and Future Prospects.

Gels. 2021-12-21

[9]
Investigating the Correlation between Electrolyte Concentration and Electrochemical Properties of Ionogels.

Molecules. 2023-7-4

[10]
Ionic liquids: solvents and sorbents in sample preparation.

J Sep Sci. 2017-10-17

引用本文的文献

[1]
Selectively damping materials for next-generation motion-artifact-free skin-interfaced soft bioelectronics.

Mater Horiz. 2025-7-2

[2]
Studies on nitrate acid based imidazolium ionic liquids: synthesis and application in electrochemical desulfurization of oil.

RSC Adv. 2025-6-2

[3]
Sustainable Manufacturing of Lightweight Hybrid Nanocomposites for Electric Vehicle Battery Enclosures.

Polymers (Basel). 2025-4-14

[4]
Surface-engineered vertically-aligned ZnO nanorod for sensitive non-enzymatic electrochemical monitoring of cholesterol.

Heliyon. 2024-9-11

[5]
Zr modulated N doping composites for CO conversion into carbonates.

iScience. 2024-4-9

[6]
Self-Healing Ionogel-Enabled Self-Healing and Wide-Temperature Flexible Zinc-Air Batteries with Ultra-Long Cycling Lives.

Adv Sci (Weinh). 2024-7

[7]
Covalent-Organic Framework-Based Materials in Theranostic Applications: Insights into Their Advantages and Challenges.

ACS Omega. 2024-1-29

[8]
Advances in the Use of Conducting Polymers for Healthcare Monitoring.

Int J Mol Sci. 2024-1-26

[9]
Boosting the Sensitivity and Hysteresis of a Gel Polymer Electrolyte by Embedding SiO Nanoparticles and PVP for Humidity Applications.

Gels. 2024-1-10

[10]
Elucidating the Structure, Dynamics, and Interaction of a Choline Chloride and Citric Acid Based Eutectic System by Spectroscopic and Molecular Modeling Investigations.

ACS Omega. 2023-10-4

本文引用的文献

[1]
Printable, Degradable, and Biocompatible Ion Gels from a Renewable ABA Triblock Polyester and a Low Toxicity Ionic Liquid.

ACS Macro Lett. 2017-10-17

[2]
Chemistry and engineering of brush type polymers: Perspective towards tissue engineering.

Adv Colloid Interface Sci. 2022-7

[3]
Synthesis of gemini basic ionic liquids and their application in anion exchange membranes.

RSC Adv. 2018-3-13

[4]
Recent developments in microbial degradation of polypropylene: Integrated approaches towards a sustainable environment.

Sci Total Environ. 2022-6-20

[5]
Direct grafting of cellulose nanocrystals with poly(ionic liquids) via Gamma-ray irradiation and their utilization for adsorptive removal of CR.

Int J Biol Macromol. 2022-1-1

[6]
Functional Ionic Liquids Decorated Carbon Hybrid Nanomaterials for the Electrochemical Biosensors.

Biosensors (Basel). 2021-10-23

[7]
Ionic Liquid-Based Materials for Biomedical Applications.

Nanomaterials (Basel). 2021-9-15

[8]
Design of concentrated colloidal dispersions of iron oxide nanoparticles in ionic liquids: Structure and thermal stability from 25 to 200 °C.

J Colloid Interface Sci. 2022-2

[9]
A Brief Review on the Influence of Ionic Liquids on the Mechanical, Thermal, and Chemical Properties of Biodegradable Polymer Composites.

Polymers (Basel). 2021-8-5

[10]
Porous Ion Gel: A Versatile Ionotronic Sensory Platform for High-Performance, Wearable Ionoskins with Electrical and Optical Dual Output.

ACS Nano. 2021-9-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索