Suppr超能文献

使用遗传算法和分析模型开发聚丙烯复合材料配方

Development of PP Compound Recipes Using Genetic Algorithms and Analytical Models.

作者信息

Seifert Lukas, Leuchtenberger-Engel Lisa, Hopmann Christian

机构信息

Institute for Plastics Processing (IKV) in Industry and Craft at RWTH Aachen University, Seffenter Weg 201, 52074 Aachen, Germany.

出版信息

Polymers (Basel). 2025 Apr 14;17(8):1059. doi: 10.3390/polym17081059.

Abstract

This study explores the development of polypropylene (PP) compound recipes using analytical models (AM) combined with genetic algorithms (GAs). A talcum-filled PP compound, commonly utilised in injection moulding for packaging applications, served as a reference material, with shear viscosity, tensile modulus, and impact strength selected as target properties for replication. The AM were adapted and fitted to a dataset of 52 compounds, achieving high predictive accuracy for shear viscosity and tensile modulus, while impact strength proved more challenging due to its inherent variability. Three recipes were generated using GA under predefined material constraints. Recipe 1 aimed to replicate all three target properties, achieving a balanced compromise with maximum deviations of 13.14% for tensile modulus and 12.37% for impact strength while closely matching shear viscosity (maximum 9.8% deviation). Recipes 2 and 3, focused solely on matching shear viscosity and impact strength, demonstrated exceptional accuracy for shear viscosity, with Recipe 2 achieving near-perfect alignment (2.5% deviation). However, neither recipe approached the tensile modulus target due to material limitations. The findings demonstrate the effectiveness of combining AM with GA for designing alternative formulations, emphasising the importance of realistic targets and material constraints. This methodology is highly adaptable, allowing for the inclusion of additional optimisation criteria such as cost or sustainability. Future work will explore broader material sets and properties, extending the framework's applicability to technical polymers and diverse industrial applications.

摘要

本研究探索了使用分析模型(AM)结合遗传算法(GA)来开发聚丙烯(PP)复合材料配方。一种用于注塑包装应用的滑石填充PP复合材料用作参考材料,选择剪切粘度、拉伸模量和冲击强度作为复制的目标性能。对AM进行了调整并拟合到52种复合材料的数据集,对剪切粘度和拉伸模量实现了较高的预测精度,而冲击强度因其固有变异性而更具挑战性。在预定义的材料约束下使用GA生成了三种配方。配方1旨在复制所有三种目标性能,在拉伸模量最大偏差为13.14%、冲击强度最大偏差为12.37%的情况下实现了平衡折衷,同时紧密匹配剪切粘度(最大偏差9.8%)。配方2和配方3仅专注于匹配剪切粘度和冲击强度,对剪切粘度表现出卓越的精度,配方2实现了近乎完美的匹配(偏差2.5%)。然而,由于材料限制,这两种配方都未达到拉伸模量目标。研究结果证明了将AM与GA相结合用于设计替代配方的有效性,强调了现实目标和材料约束的重要性。这种方法具有高度的适应性,允许纳入额外的优化标准,如成本或可持续性。未来的工作将探索更广泛的材料集和性能,将该框架的适用性扩展到工程聚合物和各种工业应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1899/12030161/8f657ed53463/polymers-17-01059-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验