Macedo Júlia Borges de, Bueno Julia Narayana Schoroeder, Kanunfre Carla Cristine, Miranda José Ricardo de Arruda, Bakuzis Andris Figueiroa, Ferrari Priscileila Colerato
Department of Pharmaceutical Sciences, Ponta Grossa State University (UEPG), Ponta Grossa 84030-900, PR, Brazil.
Department of General Biology, Ponta Grossa State University (UEPG), Ponta Grossa 84030-900, PR, Brazil.
Pharmaceutics. 2025 Apr 3;17(4):467. doi: 10.3390/pharmaceutics17040467.
: Nanoparticle-based drug delivery systems improve pharmacokinetic aspects, including controlled release and drug targeting, increasing therapeutic efficacy, and reducing toxicity in conventional colon cancer treatment. The superparamagnetism of magnetic nanoparticles (MNP) appears to be a potential alternative for magnetothermal therapy, inducing tumor cell death by an external magnetic field. Therefore, this study aimed to develop chitosan (CS) and folate-chitosan (FA-CS)-coated MNP to improve the stability and targeting of the system for quercetin (Q) delivery. : After FA-CS synthesis and 3 factorial design, polymer-functionalized MNPs were produced for quercetin loading, characterized, and evaluated by drug dissolution and cytotoxicity assay. : The factorial design indicated the positive influence of CS on MNPs' Zeta potential, followed by the CS-temperature interaction. Optimized formulations had hydrodynamic diameters of 122.32 ± 8.56 nm, Zeta potentials of +30.78 ± 0.8 mV, and loading efficiencies of 80.45% (MNP-CS-Q) and 54.4% (MNP-FA-CS-Q). The 24 h drug release was controlled in MNP-CS-Q (up to 6.4%) and MNP-FA-CS-Q (up to 7.7%) in a simulated tumor medium, with Fickian diffusion release mechanism correlated to the Korsmeyer-Peppas model (R > 0.99). The cytotoxicity assay in HCT-116 showed a higher ( < 0.001) dose-dependent antitumor effect of quercetin-loaded MNP compared to free drug, with IC50s of 1.46 (MNP-CS) and 1.30 µg·mL (MNP-FA-CS). : Therefore, this study contributes to the development of biomedical nanotechnology and the magnetic debate by highlighting the antitumor potential of quercetin magnetic nanoparticles. The experimental design allows the discussion of critical manufacturing variables and the determination of optimal parameters for the formulations.
基于纳米颗粒的药物递送系统改善了药代动力学方面,包括控释和药物靶向,提高了治疗效果,并降低了传统结肠癌治疗中的毒性。磁性纳米颗粒(MNP)的超顺磁性似乎是磁热疗法的一种潜在替代方法,可通过外部磁场诱导肿瘤细胞死亡。因此,本研究旨在开发壳聚糖(CS)和叶酸-壳聚糖(FA-CS)包被的MNP,以提高槲皮素(Q)递送系统的稳定性和靶向性。:在FA-CS合成和三因素设计之后,制备了聚合物功能化的MNP用于槲皮素负载,通过药物溶解和细胞毒性测定对其进行表征和评估。:三因素设计表明CS对MNP的zeta电位有积极影响,其次是CS-温度相互作用。优化后的制剂流体动力学直径为122.32±8.56nm,zeta电位为+30.78±0.8mV,负载效率分别为80.45%(MNP-CS-Q)和54.4%(MNP-FA-CS-Q)。在模拟肿瘤介质中,MNP-CS-Q(高达6.4%)和MNP-FA-CS-Q(高达7.7%)的24小时药物释放得到控制,菲克扩散释放机制与Korsmeyer-Peppas模型相关(R>0.99)。在HCT-116中的细胞毒性测定表明,与游离药物相比,负载槲皮素的MNP具有更高的(<0.001)剂量依赖性抗肿瘤作用,IC50分别为1.46(MNP-CS)和1.30μg·mL(MNP-FA-CS)。:因此,本研究通过突出槲皮素磁性纳米颗粒的抗肿瘤潜力,为生物医学纳米技术的发展和磁性研究做出了贡献。实验设计允许讨论关键的制造变量并确定制剂的最佳参数。