文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system.

作者信息

Barahuie Farahnaz, Dorniani Dena, Saifullah Bullo, Gothai Sivapragasam, Hussein Mohd Zobir, Pandurangan Ashok Kumar, Arulselvan Palanisamy, Norhaizan Mohd Esa

机构信息

Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Zabol University of Medical Sciences, Zabol, Iran.

Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Department of Chemistry, University of Sheffield, Sheffield, UK.

出版信息

Int J Nanomedicine. 2017 Mar 27;12:2361-2372. doi: 10.2147/IJN.S126245. eCollection 2017.


DOI:10.2147/IJN.S126245
PMID:28392693
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5376211/
Abstract

Chitosan (CS) iron oxide magnetic nanoparticles (MNPs) were coated with phytic acid (PTA) to form phytic acid-chitosan-iron oxide nanocomposite (PTA-CS-MNP). The obtained nanocomposite and nanocarrier were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, transmission electron microscopy, and thermogravimetric and differential thermogravimetric analyses. Fourier transform infrared spectra and thermal analysis of MNPs and PTA-CS-MNP nanocomposite confirmed the binding of CS on the surface of MNPs and the loading of PTA in the PTA-CS-MNP nanocomposite. The coating process enhanced the thermal stability of the anticancer nanocomposite obtained. X-ray diffraction results showed that the MNPs and PTA-CS-MNP nanocomposite are pure magnetite. Drug loading was estimated using ultraviolet-visible spectroscopy and showing a 12.9% in the designed nanocomposite. Magnetization curves demonstrated that the synthesized MNPs and nanocomposite were superparamagnetic with saturation magnetizations of 53.25 emu/g and 42.15 emu/g, respectively. The release study showed that around 86% and 93% of PTA from PTA-CS-MNP nanocomposite could be released within 127 and 56 hours by a phosphate buffer solution at pH 7.4 and 4.8, respectively, in a sustained manner and governed by pseudo-second order kinetic model. The cytotoxicity of the compounds on HT-29 colon cancer cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The HT-29 cell line was more sensitive against PTA-CS-MNP nanocomposite than PTA alone. No cytotoxic effect was observed on normal cells (3T3 fibroblast cells). This result indicates that PTA-CS-MNP nanocomposite can inhibit the proliferation of colon cancer cells without causing any harm to normal cell.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/1cc3d7c678d8/ijn-12-2361Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/37cdd21fb0e9/ijn-12-2361Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/08dc8aef8c5a/ijn-12-2361Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/914feec43c79/ijn-12-2361Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/c0bc20786cd8/ijn-12-2361Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/e241afb3ccb9/ijn-12-2361Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/f669b21f42a7/ijn-12-2361Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/f3a25fad77d7/ijn-12-2361Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/868ffc2b06db/ijn-12-2361Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/1cc3d7c678d8/ijn-12-2361Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/37cdd21fb0e9/ijn-12-2361Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/08dc8aef8c5a/ijn-12-2361Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/914feec43c79/ijn-12-2361Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/c0bc20786cd8/ijn-12-2361Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/e241afb3ccb9/ijn-12-2361Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/f669b21f42a7/ijn-12-2361Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/f3a25fad77d7/ijn-12-2361Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/868ffc2b06db/ijn-12-2361Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f13/5376211/1cc3d7c678d8/ijn-12-2361Fig9.jpg

相似文献

[1]
Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system.

Int J Nanomedicine. 2017-3-27

[2]
Antimicrobial and controlled release studies of a novel nystatin conjugated iron oxide nanocomposite.

Biomed Res Int. 2014-5-12

[3]
Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications.

Int J Nanomedicine. 2014-8-8

[4]
Novel kojic acid-polymer-based magnetic nanocomposites for medical applications.

Int J Nanomedicine. 2014-1-7

[5]
Release of a liver anticancer drug, sorafenib from its PVA/LDH- and PEG/LDH-coated iron oxide nanoparticles for drug delivery applications.

Sci Rep. 2020-12-9

[6]
Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system.

Drug Des Devel Ther. 2013-9-25

[7]
Sustained release of prindopril erbumine from its chitosan-coated magnetic nanoparticles for biomedical applications.

Int J Mol Sci. 2013-12-3

[8]
Synthesis, characterization, controlled release, and antibacterial studies of a novel streptomycin chitosan magnetic nanoantibiotic.

Int J Nanomedicine. 2014-1-16

[9]
Arginine-chitosan- and arginine-polyethylene glycol-conjugated superparamagnetic nanoparticles: Preparation, cytotoxicity and controlled-release.

J Biomater Appl. 2014-8

[10]
Enhancement of magnetofection efficiency using chitosan coated superparamagnetic iron oxide nanoparticles and calf thymus DNA.

Colloids Surf B Biointerfaces. 2017-4-1

引用本文的文献

[1]
Luteinizing Hormone-Releasing Hormone (LHRH)-Conjugated Cancer Drug Delivery from Magnetite Nanoparticle-Modified Microporous Poly-Di-Methyl-Siloxane (PDMS) Systems for the Targeted Treatment of Triple Negative Breast Cancer Cells.

J Funct Biomater. 2024-7-28

[2]
Impacts of designed vanillic acid-polymer-magnetic iron oxide nanocomposite on breast cancer cells.

Heliyon. 2024-6-12

[3]
Tetracalcium Phosphate Biocement Hardened with a Mixture of Phytic Acid-Phytase in the Healing Process of Osteochondral Defects in Sheep.

Int J Mol Sci. 2023-10-28

[4]
Design of hydrophobic polyurethane-magnetite iron oxide-titanium dioxide nanocomposites for oil-water separation.

Heliyon. 2023-4-20

[5]
Impact of Air-Drying Temperature on Antioxidant Properties and ACE-Inhibiting Activity of Fungal Fermented Lentil Flour.

Foods. 2023-2-27

[6]
A review on metabolites and pharmaceutical potential of food legume crop mung bean ( L. Wilczek).

BioTechnologia (Pozn). 2021-12-22

[7]
Fabrication of Curcumin Diethyl γ-Aminobutyrate-Loaded Chitosan-Coated Magnetic Nanocarriers for Improvement of Cytotoxicity against Breast Cancer Cells.

Polymers (Basel). 2022-12-19

[8]
CFD Analysis and Life Cycle Assessment of Continuous Synthesis of Magnetite Nanoparticles Using 2D and 3D Micromixers.

Micromachines (Basel). 2022-6-19

[9]
FeO nanoparticles coated with carboxymethyl chitosan containing curcumin in combination with hyperthermia induced apoptosis in breast cancer cells.

Prog Biomater. 2022-3

[10]
A possible theranostic approach of chitosan-coated iron oxide nanoparticles against human colorectal carcinoma (HCT-116) cell line.

Saudi J Biol Sci. 2022-1

本文引用的文献

[1]
Polymeric multifunctional nanomaterials for theranostics.

J Mater Chem B. 2015-9-14

[2]
Tamoxifen embedded in lipid bilayer improves the oncotarget of liposomal daunorubicin in vivo.

J Mater Chem B. 2014-3-28

[3]
Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid.

Mater Sci Eng C Mater Biol Appl. 2016-12-5

[4]
Scientific Evidence of Rice By-Products for Cancer Prevention: Chemopreventive Properties of Waste Products from Rice Milling on Carcinogenesis and .

Biomed Res Int. 2017

[5]
Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug.

Eur J Pharmacol. 2016-5-12

[6]
Graphene in therapeutics delivery: Problems, solutions and future opportunities.

Eur J Pharm Biopharm. 2016-7

[7]
Recent advances in liposome surface modification for oral drug delivery.

Nanomedicine (Lond). 2016-4-13

[8]
A7RC peptide modified paclitaxel liposomes dually target breast cancer.

Biomater Sci. 2015-8-20

[9]
High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging.

Int J Nanomedicine. 2015-2-5

[10]
An intestinal Trojan horse for gene delivery.

Nanoscale. 2015-3-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索