Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Clin Pharmacol Ther. 2024 Aug;116(2):415-425. doi: 10.1002/cpt.3302. Epub 2024 May 15.
Bispecific T-cell engagers (bsTCEs) have emerged as a promising class of cancer immunotherapy. BsTCEs enable physical connections between T cells and tumor cells to enhance T-cell activity against cancer. Despite several marketing approvals, the development of bsTCEs remains challenging, especially at early clinical translational stages. The intricate design of bsTCEs makes their pharmacologic effects and safety profiles highly dependent on patient's immunological and tumor conditions. Such context-dependent pharmacology introduces considerable uncertainty into translational efforts. In this study, we developed a Quantitative Systems Pharmacology (QSP) model, through context unification, that can facilitate the translation of bsTCEs preclinical data into clinical activity. Through characterizing the formation dynamics of immunological synapse (IS) induced by bsTCEs, this model unifies a broad range of contexts related to target affinity, tumor characteristics, and immunological conditions. After rigorous calibration using both experimental and clinical data, the model enables consistent translation of drug potency observed under diverse experimental conditions into predictable exposure-response relationships in patients. Moreover, the model can help identify optimal target-binding affinities and minimum efficacious concentrations across different clinical contexts. This QSP approach holds significant promise for the future development of bsTCEs.
双特异性 T 细胞衔接器(bsTCEs)已成为一种很有前途的癌症免疫疗法。bsTCEs 能够在 T 细胞和肿瘤细胞之间建立物理连接,从而增强 T 细胞对癌症的活性。尽管已经有几种药物获得了批准,但 bsTCEs 的开发仍然具有挑战性,尤其是在早期临床转化阶段。bsTCEs 的复杂设计使得它们的药效学和安全性与患者的免疫和肿瘤状况高度相关。这种依赖于背景的药理学给转化研究带来了相当大的不确定性。在本研究中,我们通过上下文统一开发了一种定量系统药理学(QSP)模型,该模型可以促进 bsTCEs 的临床前数据向临床活性的转化。通过对 bsTCEs 诱导的免疫突触(IS)形成动力学进行特征描述,该模型统一了与靶点亲和力、肿瘤特征和免疫状况相关的广泛背景。通过使用实验和临床数据进行严格的校准,该模型能够将在不同实验条件下观察到的药物效力一致地转化为患者的可预测的暴露-反应关系。此外,该模型可以帮助确定不同临床背景下的最佳靶标结合亲和力和最小有效浓度。这种 QSP 方法为 bsTCEs 的未来发展提供了重要的前景。