Sousa Lucas C, Silva Yago M R, Schettino Vinícius B, Santos Tatiana M B, Zachi Alessandro R L, Gouvêa Josiel A, Pinto Milena F
Federal Center for Technological Education Celso Suckow da Fonseca, CEFET, Rio de Janeiro 20271-110, Brazil.
Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, INESC Technology and Science, 4200-465 Porto, Portugal.
Sensors (Basel). 2025 Apr 9;25(8):2387. doi: 10.3390/s25082387.
This paper presents an obstacle avoidance technique for a mobile robot in human-robot collaborative (HRC) tasks. The proposed solution uses fuzzy logic rules and a convolutional neural network (CNN) in an integrated approach to detect objects during vehicle movement. The goal is to improve the robot's navigation autonomously and ensure the safety of people and equipment in dynamic environments. Using this technique, it is possible to provide important references to the robot's internal control system, guiding it to continuously adjust its velocity and yaw in order to avoid obstacles (humans and moving objects) while following the path planned for its task. The approach aims to improve operational safety without compromising productivity, addressing critical challenges in collaborative robotics. The system was tested in a simulated environment using the Robot Operating System (ROS) and Gazebo to demonstrate the effectiveness of navigation and obstacle avoidance. The results obtained with the application of the proposed technique indicate that the framework allows real-time adaptation and safe interaction between robot and obstacles in complex and changing industrial workspaces.
本文提出了一种用于移动机器人在人机协作(HRC)任务中的避障技术。所提出的解决方案采用模糊逻辑规则和卷积神经网络(CNN)的集成方法,在车辆移动过程中检测物体。目标是自主改善机器人的导航,并确保动态环境中人员和设备的安全。使用该技术,可以为机器人的内部控制系统提供重要参考,引导其不断调整速度和偏航,以便在遵循为其任务规划的路径时避开障碍物(人和移动物体)。该方法旨在提高操作安全性而不影响生产率,解决协作机器人技术中的关键挑战。该系统在使用机器人操作系统(ROS)和Gazebo的模拟环境中进行了测试,以证明导航和避障的有效性。应用所提出技术获得的结果表明,该框架允许在复杂多变的工业工作空间中机器人与障碍物之间进行实时自适应和安全交互。