Suppr超能文献

用于跟随人类机器人的轻量级双层控制架构

Lightweight Two-Layer Control Architecture for Human-Following Robot.

作者信息

Acosta-Amaya Gustavo A, Miranda-Montoya Deimer A, Jimenez-Builes Jovani A

机构信息

Instrumentation and Control Department, Faculty of Engineering, Politécnico Colombiano Jaime Isaza Cadavid, Medellín 050022, Colombia.

Department of Computer and Decision Sciences, Faculty of Mines, Universidad Nacional de Colombia, Medellín 050034, Colombia.

出版信息

Sensors (Basel). 2024 Dec 5;24(23):7796. doi: 10.3390/s24237796.

Abstract

(1) Background: Human detection and tracking are critical tasks for assistive autonomous robots, particularly in ensuring safe and efficient human-robot interaction in indoor environments. The increasing need for personal assistance among the elderly and people with disabilities has led to the development of innovative robotic systems. (2) Methods: This research presents a lightweight two-layer control architecture for a human-following robot, integrating a fuzzy behavior-based control system with low-level embedded controllers. The system uses an RGB-D sensor to capture distance and angular data, processed by a fuzzy controller to generate speed set-points for the robot's motors. The low-level control layer was developed using pole placement and internal model control (IMC) methods. (3) Results: Experimental validation demonstrated that the proposed architecture enables the robot to follow a person in real time, maintaining the predefined following distance of 1.3 m in each of the five conducted trials. The IMC-based controller demonstrated superior performance compared to the pole placement controller across all evaluated metrics. (4) Conclusions: The proposed control architecture effectively addresses the challenges of human-following in indoor environments, offering a robust, real-time solution suitable for assistive robotics with limited computational resources. The system's modularity and scalability make it a promising approach for future developments in personal assistance robotics.

摘要

(1) 背景:人体检测与跟踪是辅助自主机器人的关键任务,特别是在确保室内环境中安全高效的人机交互方面。老年人和残疾人对个人协助的需求不断增加,推动了创新机器人系统的发展。(2) 方法:本研究提出了一种用于跟随人体机器人的轻量级两层控制架构,将基于模糊行为的控制系统与低级嵌入式控制器集成在一起。该系统使用RGB-D传感器捕获距离和角度数据,由模糊控制器进行处理,以生成机器人电机的速度设定点。低级控制层采用极点配置和内模控制(IMC)方法开发。(3) 结果:实验验证表明,所提出的架构使机器人能够实时跟随人体,在进行的五次试验中每次都保持1.3米的预定义跟随距离。基于IMC的控制器在所有评估指标上均表现出优于极点配置控制器的性能。(4) 结论:所提出的控制架构有效地解决了室内环境中跟随人体的挑战,为计算资源有限的辅助机器人提供了一种强大的实时解决方案。该系统的模块化和可扩展性使其成为个人协助机器人未来发展的一种有前途的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验