Suppr超能文献

一种基于边缘计算的网络流量分析与入侵检测集成框架,用于增强工业物联网中信息物理系统的安全性。

An Edge-Computing-Based Integrated Framework for Network Traffic Analysis and Intrusion Detection to Enhance Cyber-Physical System Security in Industrial IoT.

作者信息

Zhukabayeva Tamara, Ahmad Zulfiqar, Adamova Aigul, Karabayev Nurdaulet, Abdildayeva Assel

机构信息

Department of Information Systems, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan.

Department of Computer Engineering, Astana IT University, Astana 010000, Kazakhstan.

出版信息

Sensors (Basel). 2025 Apr 10;25(8):2395. doi: 10.3390/s25082395.

Abstract

Industrial Internet of things (IIoT) environments need to implement reliable security measures because of the growth in network traffic and overall connectivity. Accordingly, this work provides the architecture of network traffic analysis and the detection of intrusions in a network with the help of edge computing and using machine-learning methods. The study uses k-means and DBSCAN techniques to examine the flow of traffic in a network and to discover several groups of behavior and possible anomalies. An assessment of the two clustering methods shows that K-means achieves a silhouette score of 0.612, while DBSCAN achieves 0.473. For intrusion detection, k-nearest neighbors (KNN), random forest (RF), and logistic regression (LR) were used and evaluated. The analysis revealed that both KNN and RF yielded seamless results in terms of precision, recall, and F1 score, close to the maximum possible value of 1.00, as demonstrated by both ROC and precision-recall curves. Accuracy matrices show that RF had better precision and recall for both benign and attacks, while KNN and LR had good detection with slight fluctuations. With the integration of edge computing, the framework is improved by real-time data processing, which means a lower latency of the security system. This work enriches the knowledge of the IIOT by offering a detailed solution to the issue of cybersecurity in IoT systems, based on well-grounded performance assessments and the right implementation of current technologies. The results thus support the effectiveness of the proposed framework to improve security and provide tangible improvements over current approaches by identifying potential threats within a network.

摘要

由于网络流量和整体连接性的增长,工业物联网(IIoT)环境需要实施可靠的安全措施。因此,这项工作借助边缘计算并使用机器学习方法,提供了网络流量分析和网络入侵检测的架构。该研究使用k均值和DBSCAN技术来检查网络中的流量,并发现几组行为和可能的异常情况。对这两种聚类方法的评估表明,k均值的轮廓系数为0.612,而DBSCAN为0.473。对于入侵检测,使用并评估了k近邻(KNN)、随机森林(RF)和逻辑回归(LR)。分析表明,KNN和RF在精确率、召回率和F1分数方面都产生了无缝结果,接近最大可能值1.00,ROC曲线和精确率-召回率曲线都证明了这一点。准确率矩阵表明,RF在良性和攻击方面都有更好的精确率和召回率,而KNN和LR在检测方面有良好表现,但有轻微波动。通过集成边缘计算,该框架通过实时数据处理得到了改进,这意味着安全系统的延迟更低。这项工作通过基于有充分依据的性能评估和当前技术的正确实施,为物联网系统中的网络安全问题提供了详细解决方案,丰富了工业物联网的知识。因此,结果支持了所提出框架在提高安全性方面的有效性,并通过识别网络内的潜在威胁,比当前方法有切实的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d427/12031334/38cc4abda985/sensors-25-02395-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验