Suppr超能文献

物联网边缘平台的入侵检测集成技术

Ensemble technique of intrusion detection for IoT-edge platform.

作者信息

Aldaej Abdulaziz, Ullah Imdad, Ahanger Tariq Ahamed, Atiquzzaman Mohammed

机构信息

College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.

School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.

出版信息

Sci Rep. 2024 May 22;14(1):11703. doi: 10.1038/s41598-024-62435-y.

Abstract

Internet of Things (IoT) technology has revolutionized modern industrial sectors. Moreover, IoT technology has been incorporated within several vital domains of applicability. However, security is overlooked due to the limited resources of IoT devices. Intrusion detection methods are crucial for detecting attacks and responding adequately to every IoT attack. Conspicuously, the current study outlines a two-stage procedure for the determination and identification of intrusions. In the first stage, a binary classifier termed an Extra Tree (E-Tree) is used to analyze the flow of IoT data traffic within the network. In the second stage, an Ensemble Technique (ET) comprising of E-Tree, Deep Neural Network (DNN), and Random Forest (RF) examines the invasive events that have been identified. The proposed approach is validated for performance analysis. Specifically, Bot-IoT, CICIDS2018, NSL-KDD, and IoTID20 dataset were used for an in-depth performance assessment. Experimental results showed that the suggested strategy was more effective than existing machine learning methods. Specifically, the proposed technique registered enhanced statistical measures of accuracy, normalized accuracy, recall measure, and stability.

摘要

物联网(IoT)技术彻底改变了现代工业部门。此外,物联网技术已被纳入多个重要的应用领域。然而,由于物联网设备资源有限,安全性被忽视。入侵检测方法对于检测攻击并对每一次物联网攻击做出充分响应至关重要。值得注意的是,当前的研究概述了一个用于确定和识别入侵的两阶段程序。在第一阶段,使用一种称为Extra Tree(E-Tree)的二元分类器来分析网络内物联网数据流量的流动。在第二阶段,一种由E-Tree、深度神经网络(DNN)和随机森林(RF)组成的集成技术(ET)检查已识别的入侵事件。所提出的方法经过性能分析验证。具体而言,使用Bot-IoT、CICIDS2018、NSL-KDD和IoTID20数据集进行深入的性能评估。实验结果表明,所建议的策略比现有的机器学习方法更有效。具体而言,所提出的技术在准确性、归一化准确性、召回率和稳定性等统计指标上有所提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac9/11111450/60e622f13ee1/41598_2024_62435_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验