Zhukabayeva Tamara, Zholshiyeva Lazzat, Karabayev Nurdaulet, Khan Shafiullah, Alnazzawi Noha
Department of Information Systems, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan.
College of Computing and Systems, Abdullah Al Salem University, Kuwait City 72303, Kuwait.
Sensors (Basel). 2025 Jan 2;25(1):213. doi: 10.3390/s25010213.
This paper provides the complete details of current challenges and solutions in the cybersecurity of cyber-physical systems (CPS) within the context of the IIoT and its integration with edge computing (IIoT-edge computing). We systematically collected and analyzed the relevant literature from the past five years, applying a rigorous methodology to identify key sources. Our study highlights the prevalent IIoT layer attacks, common intrusion methods, and critical threats facing IIoT-edge computing environments. Additionally, we examine various types of cyberattacks targeting CPS, outlining their significant impact on industrial operations. A detailed taxonomy of primary security mechanisms for CPS within IIoT-edge computing is developed, followed by a comparative analysis of our approach against existing research. The findings underscore the widespread vulnerabilities across the IIoT architecture, particularly in relation to DoS, ransomware, malware, and MITM attacks. The review emphasizes the integration of advanced security technologies, including machine learning (ML), federated learning (FL), blockchain, blockchain-ML, deep learning (DL), encryption, cryptography, IT/OT convergence, and digital twins, as essential for enhancing the security and real-time data protection of CPS in IIoT-edge computing. Finally, the paper outlines potential future research directions aimed at advancing cybersecurity in this rapidly evolving domain.
本文详细介绍了工业物联网(IIoT)背景下网络物理系统(CPS)网络安全方面当前面临的挑战及解决方案,以及IIoT与边缘计算(IIoT - 边缘计算)的集成情况。我们系统地收集并分析了过去五年的相关文献,运用严谨的方法确定关键来源。我们的研究突出了IIoT层普遍存在的攻击、常见的入侵方法以及IIoT - 边缘计算环境面临的关键威胁。此外,我们研究了针对CPS的各类网络攻击,概述了它们对工业运营的重大影响。我们制定了IIoT - 边缘计算中CPS主要安全机制的详细分类法,随后将我们的方法与现有研究进行了比较分析。研究结果强调了IIoT架构中广泛存在的漏洞,特别是与拒绝服务(DoS)、勒索软件、恶意软件和中间人(MITM)攻击相关的漏洞。该综述强调了先进安全技术的集成,包括机器学习(ML)、联邦学习(FL)、区块链、区块链 - ML、深度学习(DL)、加密、密码学、信息技术/运营技术(IT/OT)融合以及数字孪生,对于增强IIoT - 边缘计算中CPS的安全性和实时数据保护至关重要。最后,本文概述了旨在推动这一快速发展领域网络安全的潜在未来研究方向。