Suppr超能文献

增强图像分类中的瓶颈概念学习

Enhancing Bottleneck Concept Learning in Image Classification.

作者信息

Cheng Xingfu, Niu Zhaofeng, Jiang Zhouqiang, Li Liangzhi

机构信息

Computer Science Department, Qufu Normal University, Rizhao 276826, China.

Osaka University, Osaka 565-0871, Japan.

出版信息

Sensors (Basel). 2025 Apr 10;25(8):2398. doi: 10.3390/s25082398.

Abstract

Deep neural networks (DNNs) have demonstrated exceptional performance in image classification. However, their "black-box" nature raises concerns about trust and transparency, particularly in high-stakes fields such as healthcare and autonomous systems. While explainable AI (XAI) methods attempt to address these concerns through feature- or concept-based explanations, existing approaches are often limited by the need for manually defined concepts, overly abstract granularity, or misalignment with human semantics. This paper introduces the Enhanced Bottleneck Concept Learner (E-BotCL), a self-supervised framework that autonomously discovers task-relevant, interpretable semantic concepts via a dual-path contrastive learning strategy and multi-task regularization. By combining contrastive learning to build robust concept prototypes, attention mechanisms for spatial localization, and feature aggregation to activate concepts, E-BotCL enables end-to-end concept learning and classification without requiring human supervision. Experiments conducted on the CUB200 and ImageNet datasets demonstrated that E-BotCL significantly enhanced interpretability while maintaining classification accuracy. Specifically, two interpretability metrics, the Concept Discovery Rate (CDR) and Concept Consistency (CC), improved by 0.6104 and 0.4486, respectively. This work advances the balance between model performance and transparency, offering a scalable solution for interpretable decision-making in complex vision tasks.

摘要

深度神经网络(DNN)在图像分类方面展现出了卓越的性能。然而,其“黑箱”性质引发了人们对信任和透明度的担忧,尤其是在医疗保健和自主系统等高风险领域。虽然可解释人工智能(XAI)方法试图通过基于特征或概念的解释来解决这些问题,但现有方法往往受到手动定义概念的需求、过于抽象的粒度或与人类语义不一致的限制。本文介绍了增强瓶颈概念学习器(E-BotCL),这是一个自监督框架,它通过双路径对比学习策略和多任务正则化自主发现与任务相关的、可解释的语义概念。通过结合对比学习来构建强大的概念原型、用于空间定位的注意力机制以及用于激活概念的特征聚合,E-BotCL能够在无需人工监督的情况下实现端到端的概念学习和分类。在CUB200和ImageNet数据集上进行的实验表明,E-BotCL在保持分类准确率的同时显著提高了可解释性。具体而言,两个可解释性指标,即概念发现率(CDR)和概念一致性(CC),分别提高了0.6104和0.4486。这项工作推动了模型性能和透明度之间的平衡,为复杂视觉任务中的可解释决策提供了一种可扩展的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3ca/12031560/8057715c2c00/sensors-25-02398-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验