Suppr超能文献

X-CHAR:一种基于概念的可解释复杂人类活动识别模型。

X-CHAR: A Concept-based Explainable Complex Human Activity Recognition Model.

作者信息

Jeyakumar Jeya Vikranth, Sarker Ankur, Garcia Luis Antonio, Srivastava Mani

机构信息

University of California Los Angeles, USA.

University of Southern California, Information Sciences Institute, USA.

出版信息

Proc ACM Interact Mob Wearable Ubiquitous Technol. 2023 Mar;7(1). doi: 10.1145/3580804. Epub 2023 Mar 28.

Abstract

End-to-end deep learning models are increasingly applied to safety-critical human activity recognition (HAR) applications, e.g., healthcare monitoring and smart home control, to reduce developer burden and increase the performance and robustness of prediction models. However, integrating HAR models in safety-critical applications requires trust, and recent approaches have aimed to balance the performance of deep learning models with explainable decision-making for complex activity recognition. Prior works have exploited the compositionality of complex HAR (i.e., higher-level activities composed of lower-level activities) to form models with symbolic interfaces, such as concept-bottleneck architectures, that facilitate inherently interpretable models. However, feature engineering for symbolic concepts-as well as the relationship between the concepts-requires precise annotation of lower-level activities by domain experts, usually with fixed time windows, all of which induce a heavy and error-prone workload on the domain expert. In this paper, we introduce , an eXplainable Complex Human Activity Recognition model that doesn't require precise annotation of low-level activities, offers explanations in the form of human-understandable, high-level concepts, while maintaining the robust performance of end-to-end deep learning models for time series data. learns to model complex activity recognition in the form of a sequence of concepts. For each classification, outputs a sequence of concepts and a counterfactual example as the explanation. We show that the sequence information of the concepts can be modeled using Connectionist Temporal Classification (CTC) loss without having accurate start and end times of low-level annotations in the training dataset-significantly reducing developer burden. We evaluate our model on several complex activity datasets and demonstrate that our model offers explanations without compromising the prediction accuracy in comparison to baseline models. Finally, we conducted a mechanical Turk study to show that the explanations provided by our model are more understandable than the explanations from existing methods for complex activity recognition.

摘要

端到端深度学习模型越来越多地应用于对安全至关重要的人类活动识别(HAR)应用中,例如医疗保健监测和智能家居控制,以减轻开发者负担,并提高预测模型的性能和鲁棒性。然而,将HAR模型集成到对安全至关重要的应用中需要可信度,最近的方法旨在平衡深度学习模型的性能与复杂活动识别的可解释决策。先前的工作利用复杂HAR的组合性(即由低级活动组成的高级活动)来形成具有符号接口的模型,如概念瓶颈架构,这有助于构建本质上可解释的模型。然而,符号概念的特征工程以及概念之间的关系需要领域专家对低级活动进行精确注释,通常使用固定的时间窗口,所有这些都会给领域专家带来繁重且容易出错的工作量。在本文中,我们介绍了 ,一种可解释的复杂人类活动识别模型,它不需要对低级活动进行精确注释,以人类可理解的高级概念形式提供解释,同时保持端到端深度学习模型对时间序列数据的鲁棒性能。 学习以概念序列的形式对复杂活动识别进行建模。对于每个分类, 输出一个概念序列和一个反事实示例作为解释。我们表明,可以使用联结主义时间分类(CTC)损失对概念的序列信息进行建模,而无需训练数据集中低级注释的准确开始和结束时间,这显著减轻了开发者负担。我们在几个复杂活动数据集上评估了我们的模型,并证明与基线模型相比,我们的模型在不影响预测准确性的情况下提供解释。最后,我们进行了一项亚马逊土耳其机器人研究,以表明我们的模型提供的解释比现有复杂活动识别方法的解释更易于理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/725c/10961595/674aa0c80b69/nihms-1928656-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验