Suppr超能文献

基于自动相关监视广播数据融合与交互式多模型及Informer框架的飞行轨迹预测

Flight Trajectory Prediction Based on Automatic Dependent Surveillance-Broadcast Data Fusion with Interacting Multiple Model and Informer Framework.

作者信息

Li Fan, Xu Xuezhi, Wang Rihan, Ma Mingyuan, Dong Zijing

机构信息

CAAC Key Laboratory of Flight Techniques and Flight Safety, Civil Aviation Flight University of China, Guanghan 618307, China.

College of Air Traffic Management, Civil Aviation Flight University of China, Guanghan 618307, China.

出版信息

Sensors (Basel). 2025 Apr 17;25(8):2531. doi: 10.3390/s25082531.

Abstract

Aircraft trajectory prediction is challenging because of the flight process with uncertain kinematic motion and varying dynamics, which is characterized by intricate temporal dependencies of the flight surveillance data. To address these challenges, this study proposes a novel hybrid prediction framework, the IMM-Informer, which integrates an interacting multiple model (IMM) approach with the deep learning-based Informer model. The IMM processes flight tracking with multiple typical motion models to produce the initial state predictions. Within the Informer framework, the encoder captures the temporal features with the ProbSparse self-attention mechanism, and the decoder generates trajectory deviation predictions. A final fusion combines the IMM estimators with Informer correction outputs and leverages their respective strengths to achieve accurate and robust predictions. The experiments are conducted using real flight surveillance data received from automatic dependent surveillance-broadcast (ADS-B) sensors to validate the effectiveness of the proposed method. The results demonstrate that the IMM-Informer framework has notable prediction error reductions and significantly outperforms the prediction accuracies of the standalone sequence prediction network models.

摘要

飞机轨迹预测具有挑战性,因为飞行过程中存在不确定的运动学运动和变化的动力学,其特点是飞行监视数据具有复杂的时间依赖性。为应对这些挑战,本研究提出了一种新颖的混合预测框架IMM-Informer,它将交互式多模型(IMM)方法与基于深度学习的Informer模型相结合。IMM使用多个典型运动模型处理飞行跟踪,以生成初始状态预测。在Informer框架内,编码器通过概率稀疏自注意力机制捕捉时间特征,解码器生成轨迹偏差预测。最终融合将IMM估计器与Informer校正输出相结合,并利用它们各自的优势来实现准确而稳健的预测。使用从自动相关监视广播(ADS-B)传感器接收的真实飞行监视数据进行实验,以验证所提方法的有效性。结果表明,IMM-Informer框架显著降低了预测误差,并且在预测精度上明显优于独立的序列预测网络模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17ae/12031469/61468ed7dfdc/sensors-25-02531-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验