Suppr超能文献

用于全色锐化的自监督多尺度对比与注意力引导梯度投影网络

Self-Supervised Multiscale Contrastive and Attention-Guided Gradient Projection Network for Pansharpening.

作者信息

Li Qingping, Yang Xiaomin, Li Bingru, Wang Jin

机构信息

College of Electronic Information, Sichuan University, Chengdu 610017, China.

出版信息

Sensors (Basel). 2025 Apr 18;25(8):2560. doi: 10.3390/s25082560.

Abstract

Pansharpening techniques are crucial in remote sensing image processing, with deep learning emerging as the mainstream solution. In this paper, the pansharpening problem is formulated as two optimization subproblems with a solution proposed based on multiscale contrastive learning combined with attention-guided gradient projection networks. First, an efficient and generalized Spectral-Spatial Universal Module (SSUM) is designed and applied to spectral and spatial enhancement modules (SpeEB and SpaEB). Then, the multiscale high-frequency features of PAN and MS images are extracted using discrete wavelet transform (DWT). These features are combined with contrastive learning and residual connection to progressively balance spectral and spatial information. Finally, high-resolution multispectral images are generated through multiple iterations. Experimental results verify that the proposed method outperforms existing approaches in both visual quality and quantitative evaluation metrics.

摘要

全色锐化技术在遥感图像处理中至关重要,深度学习已成为主流解决方案。本文将全色锐化问题表述为两个优化子问题,并提出了一种基于多尺度对比学习结合注意力引导梯度投影网络的解决方案。首先,设计了一种高效且通用的光谱-空间通用模块(SSUM),并将其应用于光谱和空间增强模块(SpeEB和SpaEB)。然后,使用离散小波变换(DWT)提取PAN和MS图像的多尺度高频特征。这些特征与对比学习和残差连接相结合,以逐步平衡光谱和空间信息。最后,通过多次迭代生成高分辨率多光谱图像。实验结果验证了所提方法在视觉质量和定量评估指标方面均优于现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5259/12031081/2118a27c5301/sensors-25-02560-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验