Suppr超能文献

基于MFA-Net的城乡建筑分割:一种多维特征调整方法

Building Segmentation in Urban and Rural Areas with MFA-Net: A Multidimensional Feature Adjustment Approach.

作者信息

Han Zijie, Li Xue, Wang Xianteng, Wu Zihao, Liu Jian

机构信息

Key Laboratory of Earthquake Geodesy, Institute of Seismology, China Earthquake Administration, Wuhan 430071, China.

出版信息

Sensors (Basel). 2025 Apr 19;25(8):2589. doi: 10.3390/s25082589.

Abstract

Deep-learning-based methods are crucial for building extraction from high-resolution remote sensing images, playing a key role in applications like natural disaster response, land resource management, and smart city development. However, extracting precise building from complex urban and rural environments remains challenging due to spectral variability and intricate background interference, particularly in densely packed and small buildings. To address these issues, we propose an enhanced U-Net architecture, MFA-Net, which incorporates two key innovations: a Multidimensional Feature Adjustment (MFA) module that refines feature representations through Cascaded Channel, Spatial, and Multiscale Weighting Mechanisms and a Dynamic Fusion Loss function that enhances edge geometric fidelity. Evaluation on three datasets (Urban, Rural, and WHU) reveals that MFA-Net outperforms existing methods, with average improvements of 6% in F1-score and 7.3% in IoU and an average increase of 9.9% in training time. These advancements significantly improve edge delineation and the segmentation of dense building clusters, making MFA-Net especially beneficial for urban planning and land resource management.

摘要

基于深度学习的方法对于从高分辨率遥感图像中提取建筑物至关重要,在自然灾害响应、土地资源管理和智慧城市发展等应用中发挥着关键作用。然而,由于光谱变异性和复杂的背景干扰,在复杂的城乡环境中提取精确的建筑物仍然具有挑战性,特别是在密集和小型建筑物中。为了解决这些问题,我们提出了一种增强的U-Net架构MFA-Net,它包含两个关键创新:一个多维特征调整(MFA)模块,通过级联通道、空间和多尺度加权机制来细化特征表示;以及一个动态融合损失函数,增强边缘几何保真度。在三个数据集(城市、农村和WHU)上的评估表明,MFA-Net优于现有方法,F1分数平均提高6%,交并比平均提高7.3%,训练时间平均增加9.9%。这些进展显著改善了边缘描绘和密集建筑群的分割,使MFA-Net对城市规划和土地资源管理特别有益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8233/12031369/3f2eae801c73/sensors-25-02589-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验