Suppr超能文献

基于自校正加权的AUKF磁悬浮列车多传感器信息融合定位

Multi-Sensor Information Fusion Positioning of AUKF Maglev Trains Based on Self-Corrected Weighting.

作者信息

Hu Qian, Tang Hong, Fan Kuangang, Cai Wenlong

机构信息

School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, China.

Jiangxi Province Key Laboratory of Maglev Rail Transit Equipment, Jiangxi University of Science and Technology, Ganzhou 341000, China.

出版信息

Sensors (Basel). 2025 Apr 21;25(8):2628. doi: 10.3390/s25082628.

Abstract

Achieving accurate positioning of maglev trains is one of the key technologies for the safe operation of maglev trains and train schedules. Aiming at magnetic levitation train positioning, there are problems such as being easily interfered with by external noise, the single positioning method, and traditional weighting affected by historical data, which lead to the deviation of positioning fusion results. Therefore, this paper adopts self-corrected weighting and Sage-Husa noise estimation algorithms to improve them and proposes a research method of multi-sensor information fusion and positioning of an AUKF magnetic levitation train based on self-correcting weighting. Multi-sensor information fusion technology is applied to the positioning of maglev trains, which does not rely on a single sensor. It combines the Sage-Husa algorithm with the unscented Kalman filter (UKF) to form the AUKF algorithm using the data collected by the cross-sensor lines, INS, Doppler radar, and GNSS, which adaptively updates the statistical feature estimation of the measurement noise and eliminates the single-function and low-integration shortcomings of the various modules to achieve the precise positioning of maglev trains. The experimental results point out that the self-correction-based AUKF filter trajectories are closer to the real values, and their ME and RMSE errors are smaller, indicating that the self-correction-weighted AUKF algorithm proposed in this paper has significant advantages in terms of stability, accuracy, and simplicity.

摘要

实现磁悬浮列车的精确定位是磁悬浮列车安全运行和列车时刻表的关键技术之一。针对磁悬浮列车定位,存在易受外部噪声干扰、定位方法单一以及传统加权受历史数据影响等问题,导致定位融合结果出现偏差。因此,本文采用自校正加权和Sage-Husa噪声估计算法对其进行改进,提出了一种基于自校正加权的AUKF磁悬浮列车多传感器信息融合与定位的研究方法。多传感器信息融合技术应用于磁悬浮列车定位,不依赖单一传感器。它将Sage-Husa算法与无迹卡尔曼滤波器(UKF)相结合,利用跨传感器线路、惯性导航系统(INS)、多普勒雷达和全球导航卫星系统(GNSS)收集的数据形成AUKF算法,自适应更新测量噪声的统计特征估计,消除各模块功能单一和集成度低的缺点,实现磁悬浮列车的精确定位。实验结果表明,基于自校正的AUKF滤波器轨迹更接近真实值,其平均误差(ME)和均方根误差(RMSE)更小,表明本文提出的自校正加权AUKF算法在稳定性、准确性和简便性方面具有显著优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c3f/12031058/7b41ea8c62c2/sensors-25-02628-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验