Duan Ran, Xu Mengfei, Qi Weihong, Hao Xiaoyu, Xu Xinzi, Liu Xuqing, Liu Weimin
State Key Laboratory of Solidification Processing and Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, 710072, China.
Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 265503, China.
Adv Mater. 2025 Jul;37(28):e2501110. doi: 10.1002/adma.202501110. Epub 2025 Apr 26.
The incorporation of multiple metal elements into a nanoparticle without phase separation holds promise for versatile applications, yet a facile synthetic strategy is lacking. Herein, a simple and facile approach is presented, i.e., gold-autocatalyzed synthesis, in which multiple miscible or immiscible metal elements are incorporated into single-phase nanoparticles at atmospheric pressure and temperature. This study reveals the autocatalytic reduction behavior of gold and the corresponding growth process of multi-element alloy nanoparticles. The mechanism of autocatalytic synthetic reactions is revealed on the basis of molecular orbitals. Furthermore, quinary multi-element nanoparticles were prepared and applied as high-performance electrocatalysts for the hydrogen evolution reaction in alkaline electrolytes (with overpotentials of 24 and 42 mV to deliver 10 and 100 mA cm, respectively) to demonstrate the application of this strategy. This strategy enables the synthesis of multi-element materials with high tolerance of synthetic conditions for versatile applications.
将多种金属元素整合到纳米颗粒中且无相分离现象,这为其广泛应用带来了希望,但目前仍缺乏简便的合成策略。在此,我们提出了一种简单易行的方法,即金自催化合成法,该方法能在常压和常温下将多种可混溶或不可混溶的金属元素整合到单相纳米颗粒中。本研究揭示了金的自催化还原行为以及多元素合金纳米颗粒相应的生长过程。基于分子轨道揭示了自催化合成反应的机理。此外,制备了五元多元素纳米颗粒,并将其用作碱性电解质中析氢反应的高性能电催化剂(分别在过电位为24和42 mV时实现10和100 mA cm的电流密度),以证明该策略的应用。这种策略能够合成对合成条件具有高耐受性的多元素材料,以实现广泛应用。