Suppr超能文献

数字乳腺摄影中体模间的变异性:对质量控制的影响

Inter-phantom variability in digital mammography: implications for quality control.

作者信息

Gennaro Gisella, Contento Gilberto, Ballaminut Andrea, Caumo Francesca

机构信息

Veneto Institute of Oncology (IOV), IRCCS, Padua, Italy.

Cyberqual srl, Gorizia, Italy.

出版信息

Eur Radiol Exp. 2025 Apr 26;9(1):42. doi: 10.1186/s41747-025-00583-0.

Abstract

BACKGROUND

Phantoms play a critical role in mammography quality control (QC) by providing standardized conditions for evaluating image quality (IQ) metrics. However, inter-phantom variability may affect the reliability of these metrics, especially for inter-system comparisons. The aim of this study was to quantify the intra- and inter-phantom variability of IQ metrics using a set of theoretically identical phantoms.

METHODS

Twenty-four TORMAS phantoms were imaged ten times each using a mammography unit under standardized high-dose conditions. Images were analyzed using automated software to extract 64 IQ metrics, including contrast-to-noise ratio (CNR) as well as modulation transfer function (MTF)-related and other metrics. Outliers were identified and excluded. Variability was assessed by calculating intra- and inter-phantom variances and coefficients of variation (COVs). The relative contributions of intra- and inter-phantom variability to total variability were also determined.

RESULTS

Two defective phantoms were excluded. Analysis of 64 IQ metrics across 22 phantoms showed higher inter-phantom variability compared to intra-phantom variability. Mean intra- and inter-phantom COVs were 6.9% and 15.1% for the 34 CNR metrics, 4.8% and 5.4% for the 5 MTF-related metrics, 0.14% and 0.75% for the 10 contrast metrics, 4.9% and 14.8% for the 15 noise metrics, respectively. Inter-phantom variability contributed 84.2% to total variability, highlighting its dominance.

CONCLUSION

Inter-phantom variability significantly affects IQ metrics, emphasizing the importance of using the same phantom for inter-system comparisons to avoid confounding results. Conversely, phantoms are well-suited for assessing system reproducibility over time, focus on inter-system variability while consistently using a single phantom.

RELEVANCE STATEMENT

This study highlights the significant impact of inter-phantom variability on image quality assessment, emphasizing the importance of using the same phantom for benchmarking imaging systems. These findings are crucial for optimizing quality control protocols and ensuring reliable, reproducible evaluations.

KEY POINTS

Inter-phantom variability exceeded intra-phantom variability across all image quality metrics of digital mammography. Subtle details showed higher total variability compared to more distinct features. Modulation transfer function metrics exhibited comparable intra- and inter-phantom variability, highlighting positioning sensitivity. Inter-phantom variability contributes 84% to total variability, impacting imaging system comparisons. Using the same phantom ensures reliability in imaging system performance evaluations.

摘要

背景

模体在乳腺摄影质量控制(QC)中起着关键作用,它为评估图像质量(IQ)指标提供标准化条件。然而,模体间的变异性可能会影响这些指标的可靠性,尤其是在系统间比较时。本研究的目的是使用一组理论上相同的模体来量化IQ指标的模体内和模体间变异性。

方法

使用乳腺摄影设备在标准化高剂量条件下对24个TORMAS模体各成像10次。使用自动化软件分析图像,以提取64个IQ指标,包括对比度噪声比(CNR)以及与调制传递函数(MTF)相关的指标和其他指标。识别并排除异常值。通过计算模体内和模体间的方差以及变异系数(COV)来评估变异性。还确定了模体内和模体间变异性对总变异性的相对贡献。

结果

排除了两个有缺陷的模体。对22个模体的64个IQ指标进行分析表明,与模体内变异性相比,模体间变异性更高。34个CNR指标的平均模体内和模体间COV分别为6.9%和15.1%,5个与MTF相关的指标分别为4.8%和5.4%,10个对比度指标分别为0.14%和0.75%,15个噪声指标分别为4.9%和14.8%。模体间变异性占总变异性的84.2%,突出了其主导地位。

结论

模体间变异性显著影响IQ指标,强调了在系统间比较中使用相同模体以避免结果混淆的重要性。相反,模体非常适合评估系统随时间的可重复性,在始终使用单个模体的同时关注系统间变异性。

相关性声明

本研究强调了模体间变异性对图像质量评估的重大影响,强调了使用相同模体对成像系统进行基准测试的重要性。这些发现对于优化质量控制方案和确保可靠、可重复的评估至关重要。

关键点

在数字乳腺摄影的所有图像质量指标中,模体间变异性超过了模体内变异性。与更明显的特征相比,细微细节显示出更高的总变异性。调制传递函数指标在模体内和模体间表现出相当的变异性,突出了定位敏感性。模体间变异性占总变异性的84%,影响成像系统比较。使用相同模体可确保成像系统性能评估的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ccb/12033135/9b257e1a1538/41747_2025_583_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验