Suppr超能文献

用于区分青翘和老翘的液相色谱-质谱联用及顶空气相色谱-质谱联用的中级数据融合技术

Mid-Level Data Fusion Techniques of LC-MS and HS-GC-MS for Distinguishing Green and Ripe Forsythiae Fructus.

作者信息

Xie Qingling, Yuan Hanwen, Liu Shiqi, Liang Ling, Luo Jiangyi, Wang Mengyun, Li Bin, Wang Wei

机构信息

TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.

出版信息

Molecules. 2025 Mar 21;30(7):1404. doi: 10.3390/molecules30071404.

Abstract

is a crucial plant resource due to its considerable edible and medicinal value. Its fruit, named Forsythiae Fructus (FF), has been widely used in Traditional Chinese Medicine (TCM). According to the fruit maturity stage, FF is categorized into GFF (green Forsythiae Fructus) and RFF (ripe Forsythiae Fructus). In this study, metabolomics based on UPLC-Q/Orbitrap MS and HS-GC-MS, combined with chemometric methods, was employed to differentiate GFF from RFF and identify potential differential metabolites. Additionally, the mid-level data fusion method was employed to integrate data from both techniques, and the performance of the OPLS-DA model (RY = 0.986, Q = 0.974) surpassed that of the single HS-GC-MS technique (RY = 0.968, Q = 0.930). Moreover, using the criteria of VIP > 1 and -value < 0.05, 30 differential compounds were selected via mid-level data fusion, compared to the initial 61 differential compounds identified by single techniques, effectively reducing data noise and eliminating irrelevant variables. This study provides a comprehensive analysis of volatile and non-volatile compounds in FF, offering valuable insights into quality control and clinical differentiation between GFF and RFF. The findings highlight the potential use of multi-technology metabolomics in the quality control of TCM and offer new perspectives for future research on medicinal plants.

摘要

由于其具有相当大的食用和药用价值,是一种重要的植物资源。其果实名为连翘(FF),已在传统中药(TCM)中广泛使用。根据果实成熟阶段,连翘可分为青翘(GFF)和老翘(RFF)。在本研究中,基于超高效液相色谱-四极杆/轨道阱质谱(UPLC-Q/Orbitrap MS)和顶空-气相色谱-质谱(HS-GC-MS)的代谢组学,结合化学计量学方法,用于区分青翘和老翘,并鉴定潜在的差异代谢物。此外,采用中级数据融合方法整合两种技术的数据,偏最小二乘判别分析(OPLS-DA)模型的性能(RY = 0.986,Q = 0.974)超过了单一HS-GC-MS技术(RY = 0.968,Q = 0.930)。此外,使用VIP>1和P值<0.05的标准,通过中级数据融合选择了30种差异化合物,与单一技术最初鉴定的61种差异化合物相比,有效降低了数据噪声并消除了无关变量。本研究对连翘中的挥发性和非挥发性化合物进行了全面分析,为青翘和老翘的质量控制和临床鉴别提供了有价值的见解。研究结果突出了多技术代谢组学在中药质量控制中的潜在应用,并为药用植物的未来研究提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e00/11990718/5800d96c367f/molecules-30-01404-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验