Center for Biological Physics and Department of Physics, Arizona State University, Tempe, Arizona, USA.
School of Molecular Sciences and The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona, USA.
Protein Sci. 2023 Aug;32(8):e4700. doi: 10.1002/pro.4700.
We investigated the relationship between mutations and dynamics in Escherichia coli dihydrofolate reductase (DHFR) using computational methods. Our study focused on the M20 and FG loops, which are known to be functionally important and affected by mutations distal to the loops. We used molecular dynamics simulations and developed position-specific metrics, including the dynamic flexibility index (DFI) and dynamic coupling index (DCI), to analyze the dynamics of wild-type DHFR and compared our results with existing deep mutational scanning data. Our analysis showed a statistically significant association between DFI and mutational tolerance of the DHFR positions, indicating that DFI can predict functionally beneficial or detrimental substitutions. We also applied an asymmetric version of our DCI metric (DCI ) to DHFR and found that certain distal residues control the dynamics of the M20 and FG loops, whereas others are controlled by them. Residues that are suggested to control the M20 and FG loops by our DCI metric are evolutionarily nonconserved; mutations at these sites can enhance enzyme activity. On the other hand, residues controlled by the loops are mostly deleterious to function when mutated and are also evolutionary conserved. Our results suggest that dynamics-based metrics can identify residues that explain the relationship between mutation and protein function or can be targeted to rationally engineer enzymes with enhanced activity.
我们使用计算方法研究了大肠杆菌二氢叶酸还原酶 (DHFR) 中的突变与动力学之间的关系。我们的研究集中在 M20 和 FG 环上,这些区域已知在功能上很重要,并且受环外突变的影响。我们使用分子动力学模拟并开发了位置特异性指标,包括动态灵活性指数 (DFI) 和动态耦合指数 (DCI),以分析野生型 DHFR 的动力学,并将我们的结果与现有的深度突变扫描数据进行比较。我们的分析表明 DFI 与 DHFR 位置的突变耐受性之间存在统计学上显著的关联,表明 DFI 可以预测功能有益或有害的取代。我们还将我们的 DCI 指标的不对称版本 (DCI ) 应用于 DHFR,并发现某些远端残基控制着 M20 和 FG 环的动力学,而其他残基则受它们控制。我们的 DCI 指标提示控制 M20 和 FG 环的残基在进化上是非保守的;这些位点的突变可以增强酶活性。另一方面,当突变时,由环控制的残基对功能大多是有害的,并且在进化上也是保守的。我们的结果表明,基于动力学的指标可以识别出解释突变与蛋白质功能之间关系的残基,或者可以针对具有增强活性的理性工程酶进行靶向。