Campitelli P, Modi T, Ozkan S B
Department of Physics, Center for Biological Physics, Arizona State University, Tempe, Arizona 85287-1504, United States.
J Chem Theory Comput. 2024 Aug 7. doi: 10.1021/acs.jctc.4c00446.
We report a new approach that combines molecular dynamics trajectories with time-dependent linear response theory to compute the time evolution of residue fluctuation responses to force perturbations exerted at functional sites. Applying this new approach to TEM-1 beta-lactamase, we observe that the time-resolved response profiles of allosteric sites to perturbations of TEM-1 active sites are distinct from those of non-allosteric residues. Using Fourier transformations, we convert the time domain response profiles to the frequency domain and demonstrate that the frequency space representation of the perturbation response can capture the mutational behavior of each site when applied to deep sequencing mutational data. Furthermore, we show that classification models built on perturbation responses can accurately identify distal positions that regulate antibiotic resistance. These findings provide insights into the contributions of specific residues to resistance-encoded in time-resolved perturbation response behavior and highlight the importance of this new approach in identifying allosteric mutations, opening avenues for the potential characterization of additional allosteric positions without extensive computational simulations.
我们报告了一种新方法,该方法将分子动力学轨迹与含时线性响应理论相结合,以计算功能位点施加力扰动时残基波动响应的时间演化。将这种新方法应用于TEM-1β-内酰胺酶,我们观察到变构位点对TEM-1活性位点扰动的时间分辨响应谱与非变构残基的响应谱不同。通过傅里叶变换,我们将时域响应谱转换到频域,并证明当应用于深度测序突变数据时,扰动响应的频率空间表示可以捕捉每个位点的突变行为。此外,我们表明基于扰动响应构建的分类模型可以准确识别调节抗生素抗性的远端位置。这些发现为特定残基对时间分辨扰动响应行为中编码的抗性的贡献提供了见解,并突出了这种新方法在识别变构突变中的重要性,为在无需广泛计算模拟的情况下潜在表征其他变构位置开辟了途径。