Suppr超能文献

基于同步挤压变换和深度迁移学习的增强型脑电图阿尔茨海默病检测

Enhanced EEG-based Alzheimer's disease detection using synchrosqueezing transform and deep transfer learning.

作者信息

Jain Shraddha, Srivastava Rajeev

机构信息

Department of Computer Science and Engineering, Indian Institute of Technology (IIT), BHU, Varanasi Uttar Pradesh, India, 221011.

出版信息

Neuroscience. 2025 Jun 7;576:105-117. doi: 10.1016/j.neuroscience.2025.04.041. Epub 2025 Apr 24.

Abstract

The most prevalent type of dementia and a progressive neurodegenerative disease, Alzheimer's disease has a major influence on day-to-day functioning due to memory loss, cognitive decline, and behavioral problems. By using synchrosqueezing representations of EEG signals classified by fine-tuned pre-trained convolutional neural networks, this paper presents an EEG-based classification model for Alzheimer's detection. EEG signals are converted into image patterns with time-varying oscillatory elements using the synchrosqueezing technique. The classification performances of the pre-trained deep architectures (SqueezeNet, ResNet, InceptionV3, and MobileNet) using these EEG images are compared. The P3 and T5 channels are the most effective for detecting Alzheimer's disease, according to independent experiments done on EEG signals obtained from 19 scalp electrodes. With classification accuracies of 98.50% and 97.57% for the P3 and T5 channels, respectively, InceptionV3 performs the best. The study also emphasizes that the parietal and temporal lobes' typical disease dynamics are primarily reflected in the electrical activity of the cerebral cortex.

摘要

阿尔茨海默病是最常见的痴呆类型,也是一种进行性神经退行性疾病,由于记忆丧失、认知衰退和行为问题,它对日常功能有重大影响。通过使用由微调后的预训练卷积神经网络分类的脑电图(EEG)信号的同步挤压表示,本文提出了一种基于EEG的阿尔茨海默病检测分类模型。利用同步挤压技术将EEG信号转换为具有时变振荡元素的图像模式。比较了使用这些EEG图像的预训练深度架构(SqueezeNet、ResNet、InceptionV3和MobileNet)的分类性能。根据对从19个头皮电极获得的EEG信号进行的独立实验,P3和T5通道对检测阿尔茨海默病最有效。InceptionV3表现最佳,P3和T5通道的分类准确率分别为98.50%和97.57%。该研究还强调,顶叶和颞叶的典型疾病动态主要反映在大脑皮层的电活动中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验