Suppr超能文献

基于深度学习的痴呆症分类:利用皮质下信号的图像表征

Deep learning-based classification of dementia using image representation of subcortical signals.

作者信息

Ranjan Shivani, Tripathi Ayush, Shende Harshal, Badal Robin, Kumar Amit, Yadav Pramod, Joshi Deepak, Kumar Lalan

机构信息

Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India.

Department of RS and BK, All India Institute of Ayurveda Delhi, New Delhi, India.

出版信息

BMC Med Inform Decis Mak. 2025 Mar 6;25(1):113. doi: 10.1186/s12911-025-02924-w.

Abstract

BACKGROUND

Dementia is a neurological syndrome marked by cognitive decline. Alzheimer's disease (AD) and frontotemporal dementia (FTD) are the common forms of dementia, each with distinct progression patterns. Early and accurate diagnosis of dementia cases (AD and FTD) is crucial for effective medical care, as both conditions have similar early-symptoms. EEG, a non-invasive tool for recording brain activity, has shown potential in distinguishing AD from FTD and mild cognitive impairment (MCI).

METHODS

This study aims to develop a deep learning-based classification system for dementia by analyzing EEG derived scout time-series signals from deep brain regions, specifically the hippocampus, amygdala, and thalamus. Scout time series extracted via the standardized low-resolution brain electromagnetic tomography (sLORETA) technique are utilized. The time series is converted to image representations using continuous wavelet transform (CWT) and fed as input to deep learning models. Two high-density EEG datasets are utilized to validate the efficacy of the proposed method: the online BrainLat dataset (128 channels, comprising 16 AD, 13 FTD, and 19 healthy controls (HC)) and the in-house IITD-AIIA dataset (64 channels, including subjects with 10 AD, 9 MCI, and 8 HC). Different classification strategies and classifier combinations have been utilized for the accurate mapping of classes in both data sets.

RESULTS

The best results were achieved using a product of probabilities from classifiers for left and right subcortical regions in conjunction with the DenseNet model architecture. It yield accuracies of 94.17 and 77.72 on the BrainLat and IITD-AIIA datasets, respectively.

CONCLUSIONS

The results highlight that the image representation-based deep learning approach has the potential to differentiate various stages of dementia. It pave the way for more accurate and early diagnosis, which is crucial for the effective treatment and management of debilitating conditions.

摘要

背景

痴呆是一种以认知衰退为特征的神经综合征。阿尔茨海默病(AD)和额颞叶痴呆(FTD)是痴呆的常见形式,各自具有独特的进展模式。由于这两种病症早期症状相似,因此对痴呆病例(AD和FTD)进行早期准确诊断对于有效的医疗护理至关重要。脑电图(EEG)是一种记录大脑活动的非侵入性工具,已显示出在区分AD与FTD以及轻度认知障碍(MCI)方面的潜力。

方法

本研究旨在通过分析来自深部脑区(特别是海马体、杏仁核和丘脑)的脑电图衍生的侦察时间序列信号,开发一种基于深度学习的痴呆分类系统。利用通过标准化低分辨率脑电磁断层扫描(sLORETA)技术提取的侦察时间序列。使用连续小波变换(CWT)将时间序列转换为图像表示,并作为输入馈入深度学习模型。利用两个高密度脑电图数据集来验证所提出方法的有效性:在线BrainLat数据集(128个通道,包括16例AD、13例FTD和19名健康对照(HC))和内部IITD - AIIA数据集(64个通道,包括10例AD、9例MCI和8名HC受试者)。已使用不同的分类策略和分类器组合对两个数据集中的类别进行准确映射。

结果

使用来自左右皮质下区域分类器的概率乘积结合DenseNet模型架构取得了最佳结果。它在BrainLat和IITD - AIIA数据集上的准确率分别为94.17%和77.72%。

结论

结果表明基于图像表示的深度学习方法有潜力区分痴呆的各个阶段。它为更准确和早期的诊断铺平了道路,这对于衰弱病症的有效治疗和管理至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c10/11887350/9da8ed476020/12911_2025_2924_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验