Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia; Centro de Bioinformática y Biología Computacional (BIOS), Manizales, Caldas, Colombia.
Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.
Comput Biol Med. 2024 Oct;181:109022. doi: 10.1016/j.compbiomed.2024.109022. Epub 2024 Aug 22.
Dementia arises from various brain-affecting diseases and injuries, with Alzheimer's disease being the most prevalent, impacting around 55 million people globally. Current clinical diagnosis often relies on biomarkers indicative of Alzheimer's distinctive features. Electroencephalography (EEG) serves as a cost-effective, user-friendly, and safe biomarker for early Alzheimer's detection. This study utilizes EEG signals processed with Short-Time Fourier Transform (STFT) to generate spectrograms, facilitating visualization of EEG signal properties. Leveraging the Brainlat database, we propose SpectroCVT-Net, a novel convolutional vision transformer architecture incorporating channel attention mechanisms. SpectroCVT-Net integrates convolutional and attention mechanisms to capture local and global dependencies within spectrograms. Comprising feature extraction and classification stages, the model enhances Alzheimer's disease classification accuracy compared to transfer learning methods, achieving 92.59 ± 2.3% accuracy across Alzheimer's, healthy controls, and behavioral variant frontotemporal dementia (bvFTD). This article introduces a new architecture and evaluates its efficacy with unconventional data for Alzheimer's diagnosis, contributing: SpectroCVT-Net, tailored for EEG spectrogram classification without reliance on transfer learning; a convolutional vision transformer (CVT) module in the classification stage, integrating local feature extraction with attention heads for global context analysis; Grad-CAM analysis for network decision insight, identifying critical layers, frequencies, and electrodes influencing classification; and enhanced interpretability through spectrograms, illuminating key brain wave contributions to Alzheimer's, frontotemporal dementia, and healthy control classifications, potentially aiding clinical diagnosis and management.
痴呆症由各种影响大脑的疾病和损伤引起,其中阿尔茨海默病最为常见,影响着全球约 5500 万人。目前的临床诊断通常依赖于提示阿尔茨海默病特征的生物标志物。脑电图 (EEG) 是一种具有成本效益、易于使用且安全的生物标志物,可用于早期阿尔茨海默病检测。本研究利用经过短时傅里叶变换 (STFT) 处理的 EEG 信号生成频谱图,方便可视化 EEG 信号特性。利用 Brainlat 数据库,我们提出了 SpectroCVT-Net,这是一种新颖的卷积视觉转换器架构,包含通道注意力机制。SpectroCVT-Net 集成了卷积和注意力机制,以捕捉频谱图中的局部和全局依赖关系。该模型由特征提取和分类阶段组成,与迁移学习方法相比,提高了阿尔茨海默病的分类准确性,在阿尔茨海默病、健康对照组和行为变异额颞叶痴呆 (bvFTD) 中达到了 92.59±2.3%的准确率。本文介绍了一种新的架构,并使用非常规数据评估其在阿尔茨海默病诊断中的功效,贡献包括:SpectroCVT-Net,专为 EEG 频谱图分类而设计,不依赖迁移学习;分类阶段的卷积视觉转换器 (CVT) 模块,集成了局部特征提取和注意力头,用于全局上下文分析;Grad-CAM 分析用于网络决策洞察,识别影响分类的关键层、频率和电极;以及通过频谱图增强可解释性,阐明关键脑电波对阿尔茨海默病、额颞叶痴呆和健康对照组分类的贡献,可能有助于临床诊断和管理。