Suppr超能文献

用于辅助牙周治疗决策的人工智能模型的开发:一项回顾性纵向队列研究。

Development of an artificial intelligence model for assisting periodontal therapy decision-making: A retrospective longitudinal cohort study.

作者信息

Rebeiz Tamara, Lawand Ghida, Martin William, Gonzaga Luiz, Revilla-León Marta, Khalaf Stéphanie, Megarbané Jean-Marie

机构信息

Clinical Instructor, Department of Periodontology, Faculty of Dental Medicine, Saint Joseph University of Beirut, Beirut, Lebanon.

Implant Fellow, Center for Implant Dentistry, Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Florida, Gainesville, United States.

出版信息

J Dent. 2025 Aug;159:105780. doi: 10.1016/j.jdent.2025.105780. Epub 2025 Apr 24.

Abstract

OBJECTIVES

This study aims to develop and validate an artificial intelligence (AI) - driven model to assist periodontal therapy decision-making and minimize tooth loss.

METHODS

A retrospective longitudinal cohort study was conducted using clinical and radiographic data from 3347 teeth treated and followed up for at least 10 years. The parameters included in the machine learning training and testing processes included: probing pocket depth (PPD), bone loss (BL), systemic diseases, therapy type, and others. Various machine learning models were developed and evaluated for accuracy, precision, recall, F1-score, and Area Under the Receiver Operating Characteristic Curve (AUC-ROC).

RESULTS

The Random Forest model demonstrated superior performance and was selected as the final predictive model achieving an AUC score of 0.91 and an accuracy of 0.93. Significant associations were found between tooth loss and variables such as age, PPD, bone loss, and furcation involvement.

CONCLUSION

This AI-driven platform may provide a reliable tool for stratifying periodontal therapy decisions and predicting tooth loss risk, offering clinicians a supportive approach to personalize treatment plans. However, the study's retrospective design and reliance on traditional clinical metrics highlight the need for future prospective studies.

CLINICAL SIGNIFICANCE

This study introduces and validates a novel AI-driven predictive model for periodontal therapy, utilizing data from treatment cases. Unlike previous models, this approach integrates multiple clinical and radiographic parameters, demonstrating high predictive accuracy (AUC=0.91, accuracy=0.93). The use of the Random Forest algorithm allows for robust predictions, offering an innovative, data-driven approach to periodontal treatment planning. Implementing AI in periodontal therapy decision-making may have the potential to improve patient outcomes by guiding clinicians toward optimal treatment strategies, enhancing therapeutic precision, and reducing the likelihood of unnecessary interventions.

摘要

目的

本研究旨在开发并验证一种由人工智能(AI)驱动的模型,以辅助牙周治疗决策制定并尽量减少牙齿脱落。

方法

采用回顾性纵向队列研究,使用了3347颗接受治疗并随访至少10年的牙齿的临床和影像学数据。机器学习训练和测试过程中纳入的参数包括:探诊深度(PPD)、骨丧失(BL)、全身性疾病、治疗类型等。开发并评估了各种机器学习模型的准确性、精确性、召回率、F1分数以及受试者工作特征曲线下面积(AUC-ROC)。

结果

随机森林模型表现出卓越性能,被选为最终预测模型,AUC分数为0.91,准确率为0.93。发现牙齿脱落与年龄、PPD、骨丧失和根分叉病变等变量之间存在显著关联。

结论

这个由AI驱动的平台可能为牙周治疗决策分层和预测牙齿脱落风险提供一个可靠工具,为临床医生提供一种支持性方法来个性化治疗方案。然而,该研究的回顾性设计以及对传统临床指标的依赖凸显了未来进行前瞻性研究的必要性。

临床意义

本研究引入并验证了一种用于牙周治疗的新型AI驱动预测模型,利用治疗病例数据。与以往模型不同,这种方法整合了多个临床和影像学参数,显示出较高的预测准确性(AUC = 0.91,准确率 = 0.93)。随机森林算法的使用实现了可靠的预测,为牙周治疗计划提供了一种创新的、数据驱动的方法。在牙周治疗决策中应用AI可能有潜力通过引导临床医生采用最佳治疗策略、提高治疗精度以及减少不必要干预的可能性来改善患者预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验